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SUMMARY

A distance field is a representation of the closest distance from a point to a given surface. Distance fields are
widely used in applications ranging from computer vision, physics and computer graphics and have been
the subject of research of many authors in the last decade. Most of the methods for computing distance
fields are devoted to Cartesian grids while little attention has been paid to unstructured grids. Finite element
methods are well known for their ability to deal with partial differential equations in unstructured grids.
Therefore, we propose an extension of the fast marching method for computing a distance field in a finite
element context employing the element interpolation to hold the Eikonal property (‖∇�‖ = 1). A simple
algorithm to develop the computations is also presented and its efficiency demonstrated through various
unstructured grid examples. We observed that the presented algorithm has processing times proportional
to the number of mesh nodes. Copyright q 2007 John Wiley & Sons, Ltd.

Received 12 April 2006; Revised 20 March 2007; Accepted 21 March 2007

KEY WORDS: distance function; finite elements; level set; Eikonal solvers; reinitialization

1. INTRODUCTION

The level set method is a technique that makes use of implicit interface representations for capturing
its behavior within a velocity field. Since it was conceived, the level set method has shown its
versatility in solving a wide variety of problems such as: image reconstruction, collision detection,
shortest path computation, multiphase flow and others [1, 2]. In level set methods, a distance
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function is generally employed as a geometric tool to initialize and keep a surface with some
desirable properties such as smoothness and constant known gradient.

A distance function, also called distance field, can be defined as a scalar field representation
where at each point within this field we know the distance from that point to the surface of an
object [3]. Unfortunately, for practical problems, using discrete versions of the level set method,
the distance field cannot be easily determined through analytical equations and numerical methods
for computing distance functions must be applied.

The most straightforward and naı̈ve way for computing distance fields is through the use
of a geometric brute force algorithm where the point-to-point distance is computed throughout
the computational grid and the minimum distance for each point is stored. However, brute force
algorithms are infeasible due their high computational cost and the study of more efficient methods
for computing distance functions is still an open research area. Furthermore, while most of the
available methods for computing distance fields are developed for Cartesian grids, little attention
has been paid to unstructured meshes. Some of the existing methods are based on the solution of
partial differential equations while others are purely based on geometric calculations. We suggest
Reference [3] for a recent survey about distance function methods in three dimensions, related
mostly to computer graphics applications. Rouy and Tourin [4] proposed to numerically solve the
interface transport equation where the origin, or level set 0, is employed as ‘boundary’ condition and
the equation integrated in time for each direction, inward and outward, toward steady state. Sussman
et al. [5] improved this method by considering it as an initial value problem and embedded the
function signs to specify and transport the interface in both directions simultaneously. However,
methods based on the solution of the hyperbolic transport equation have drawbacks associated
with the difficulty of keeping the interface fixed during the time integration. Moreover, the method
proposed by Sussman and co-workers also suffers when the initial data are steep near the interface
and some kind of smoothness procedure must be applied to the initial condition [1]. Sussman and
Fatemi [6] suggested an improvement to keep the interface fixed during the solution procedure.
They noticed that for incompressible multiphase flow the amount of each phase must be preserved
and proposed to add a correction term to the original equation.

The first work addressing triangulated versions of the level set method is due to Barth and
Sethian [7]. In this work the authors considered a stabilized space–time Galerkin least-squares
finite element method with shock capturing to solve the Hamilton–Jacobi and Eikonal equations.
Some finite element works addressing the use of distance fields with level set methods have been
recently published. Most of them employed some of the techniques previously cited to compute
and keep a distance field function. Shepel and co-workers [8] presented a level set finite element
implementation in two commercial codes to track interfaces. Nagrath et al. [9, 10] employed a
stabilized finite element method to solve bubble dynamics problems through a level set approach.
In these works the authors computed and held the distance fields in unstructured grids by applying
finite element versions of the scheme proposed by Sussman and Fatemi [6], solving the level set
equation by the Streamline-Upwind/Petrov–Galerkin (SUPG) formulation. Recent works propose
other finite element methods to solve the level set equation, based either on an assumed gradient
formulation [11] or a discontinuous Galerkin formulation [12]. Vector level sets have been used
to describe crack propagation in [13, 14]. In this approach only nodal data are used to describe
the crack; no geometrical entity is introduced for the crack trajectory, and no partial differential
equations need to be solved to update the level sets. Belytschko et al. [15] developed a new
algorithm for smoothing the surfaces in finite element formulations of contact impact. In their
method smoothing is done implicitly by constructing signed distance functions for the interacting
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bodies. These functions are then employed for computing variables needed for implementation of
contact impact.

Sethian [16] employed the crossing-time idea to develop the fast marching method (or FMM
for short). The FMM is a technique for computing the arrival time of a front, as e.g. a balloon,
inflating in the normal direction at a set of grid points [3]. This is done by solving the Eikonal
equation from a given boundary condition. The Eikonal equation is

‖∇T ‖F = 1 (1)

where F�0 is the speed of the front, and T is the arrival time of the front. Given a point p, the
arrival time T (p) is the time at which the skin of the balloon passed p. However, if F = 1, the front
moves at unit speed, and the arrival time at p is simply the distance from p to the closest point
on the front at time 0 [3]. In order to advance the computational front, the FMM implementation
employs Cartesian grids and an algorithm based on the use of min-heap lists (see Sedgewick [17]
for details) and binary tree operations computing and advancing the solution of Equation (1) at
each grid point while keeping the heap list updated. We refer the interested reader to [2] for more
details about FMM.

Extensions of the basic FMM method have added capabilities to handle unstructured grids.
First, Kimmel and Sethian [18] introduced a first-order scheme to unstructured acute triangula-
tions in R2 and on two-dimensional surfaces, using the resulting technique to compute shortest path
geodesics on triangulated manifolds. Later, Sethian and Vladimirsky [19] built second-order meth-
ods for arbitrary unstructured meshes in Rn . Another variant have been recently proposed by Gross
et al. [20] for quadratic tetrahedra. They have shown, that in the finite element simulation of two-
phase incompressible flow with surface tension, FMM outperforms methods based on pseudo-time
stepping of the Eikonal equation. Motivated by the nice properties observed in the Cartesian FMM
and its unstructured grid extensions, we propose a novel method for computing distance func-
tions in unstructured grids. Our main concern is to develop a fast method, easy to implement,
accurate at least in the region near the interface (also called narrow band in a level set context)
and readily applicable to finite element multiphase flow solvers. In order to reach these desir-
able features, we propose to employ the finite element interpolation itself to hold the Eikonal
property at element level. We also propose an advancing front algorithm that instead of using
heap-lists is simply based on a list of elements that can be used to compute the distance, and ad-
vances inserting, enabling and disabling new elements according to the algorithm evolution. This
algorithm uses simple data structures present in most finite element mesh generators and adap-
tive codes (see, for instance, [21]). Furthermore, this new method, while relaxing some of the
FMM assumptions, inherits some of its features, such as: the interface is kept fixed during
the distance computation, the method marches in both directions from the interface considering
the distance signs, there is no need to explicitly determine where the interface is, the computation
can be restricted within a narrow band to decrease computational costs and the method can be
also employed to solve other problems related to arrival time, shortest path or distance functions
computation.

The outline of this work is as follows: in the first part of Section 2 we discuss how to compute the
distance function using finite element interpolations to impose the satisfaction of Eikonal equation
at element level. In the second part, the algorithm employed to evolve the computations is detailed
and illustrated. In Section 3 some examples are presented to validate and evaluate the performance
of our proposal and in the last section our conclusions and final remarks are presented.
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2. DISTANCE FUNCTION COMPUTATION

This section presents a novel method for computing distance functions in unstructured meshes.
The method is based on the use of finite element interpolation to hold the Eikonal property
(‖∇�‖ = 1) at element level over the whole computational domain. We also propose an algorithm
to evolve the computations that can be easily implemented and extended to two-dimensional and
three-dimensional cases.

2.1. Solving the Eikonal equation element by element

Let us assume that the finite element version of the Eikonal equation computed at element level
is as follows:

‖∇�e‖ = ‖BTd‖= 1 (2)

where �e is the element distance function, d is the element distance vector and B is the discrete
gradient operator. For a linear tetrahedral element d and B can be expressed as

dT = [d1 d2 d3 d4] (3)

B= 1

6V

⎡
⎢⎢⎢⎢⎣
N1,x N1,y N1,z

N2,x N2,y N2,z

N3,x N3,y N3,z

N4,x N4,y N4,z

⎤
⎥⎥⎥⎥⎦ (4)

where V is the element volume and Ni, j is the partial derivative of the element interpolation at
node i and direction j , given, respectively, as

N1,x = (z43y23 − z23y43), N1,y = (z42y32 − z32y42), N1,z = (y43x23 − x43y23)

N2,x = (y31z41 − y41z31), N2,y = (x41z31 − x31z41), N2,z = (y41x31 − y31x41)

N3,x = (y41z21 − y21z41), N3,y = (x21z41 − x41z21), N3,z = (y42x12 − x42y12)

N4,x = −(N1,x + N2,x + N3,x ), N4,y =−(N1,y + N2,y + N3,y)

N4,z = −(N1,z + N2,z + N3,z)

(5)

6V = x21(z31y14 − y31z14) + x31(z12y14 − y12z14) + x41(z12y31 − y12z31) (6)

and

xi j = xi − x j , yi j = yi − y j , zi j = zi − z j (7)

Thus, the distance function gradient at element level is simply⎡
⎢⎢⎣

�e
,x

�e
,y

�e
,z

⎤
⎥⎥⎦ =

⎡
⎢⎣
N1,xd1 + N2,xd2 + N3,xd3 + N4,xd4

N1,yd1 + N2,yd2 + N3,yd3 + N4,yd4

N1,zd1 + N2,zd2 + N3,zd3 + N4,zd4

⎤
⎥⎦ (8)
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which lead us to the following constraint in order to hold the Eikonal equation at element level,

(�e
,x )

2 + (�e
,y)

2 + (�e
,z)

2 = 1 (9)

It is easy to realize that given three known distances within a tetrahedron we can readily compute
the fourth distance solving the quadratic constraint described in Equation (9). This method is an
extension, in a finite element context, of the FMM initially proposed by Sethian [16]. Expanding
Equation (9) to compute the distance at the fourth element node we arrive at

(dx + N4,xd4)
2 + (dy + N4,yd4)

2 + (dz + N4,zd4)
2 = 1 (10)

where

dx = N1,xd1 + N2,xd2 + N3,xd3 (11)

dy = N1,yd1 + N2,yd2 + N3,yd3 (12)

dz = N1,zd1 + N2,zd2 + N3,zd3 (13)

The quadratic form of Equation (10) is

(N 2
4,x + N 2

4,y + N 2
4,z)︸ ︷︷ ︸

a

d24 + (2dx N4,x + 2dyN4,y + 2dzN4,z)︸ ︷︷ ︸
b

d4 + (d2x + d2y + d2z − 1)︸ ︷︷ ︸
c

= 0 (14)

and following FMM, we will assume that the distance of the fourth node can be taken as the
maximum of the two real roots, thus

d4 = max

(
−b + √

b2 − 4ac

4ac
,
−b − √

b2 − 4ac

4ac

)
(15)

Note that the roots of Equation (14) will be the possible values to hold a unitary gradient
within the element as required by the Eikonal equation. It is also important to emphasize that the
computational solution of the quadratic equation (14) requires a careful treatment in order to avoid
roundoff errors [22]. However, in many situations Equation (14) does not have any real roots. In
two dimensions, the inability to solve the quadratic equation (14) corresponds to an inability to tilt
the plane representing the distance approximation within an element at an appropriate angle (see
[18] for further details). Possible solutions for this problem, as indeed pointed out in References
[18, 19], involve looking for other elements to compute, modifying locally the mesh, using high-
order approximations or a combination of them. Here, we will simply skip the elements where we
found imaginary roots, approximating the missing nodal distance by a suitable defined interpolation
involving the surrounded known nodes, as described below.

2.2. The algorithm

In this section we describe the algorithm employed to evolve Equations (14) and (15) over
the whole computational domain. We will describe the algorithm for triangulated meshes in
order to make it easier to understand, but the reader should note that the extension for
three-dimensional cases is straightforward. The algorithm is based on the FMM proposed
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Figure 1. Triangulated mesh and interface.

by Sethian [16] and its unstructured grid variations [18, 19]. Thus, let us consider the triangulated
mesh in Figure 1.

The filled red nodes represent origin nodes (level set zero in the level set context) where the
distances are known (d = 0.0) and the open black nodes represent the unknown nodes. Elements
are identified by letters while nodes are represented by numbers. Taking as an example, consider
the node ‘1’ in Figure 1. Note that only the element ‘a’, which has two known nodes, is capable
of producing the distance for the node ‘1’. Furthermore, after computing the distance for this
node we will be capable of computing also the distances for the nodes ‘2’ and ‘7’ through the
elements ‘e’ and ‘k’, respectively. This is the main idea of the proposed algorithm: solve any
computable element; those that have at least two known nodes for triangulated meshes or three
for tetrahedral meshes; and make other elements available to later computations according to the
algorithm evolution. Note that we are not concerned about which node or element is closer to
the interface, as is done in the min-heap list employed in classical implementations of the FMM,
but we are trying to compute a valid solution from any computable element instead. Moreover,
the computable elements will arise, naturally, from those closest to the interface and will march
inwards and outwards according to the algorithm evolution. Another important issue to discuss is
that, after solving node ‘1’ from element ‘a’ and node ‘2’ from element ‘o’, the element ‘e’ might
be discarded from the computation. This assumption will clearly reduce the number of algorithm
iterations.

Now we can describe the main components involved in our algorithm. From Figure 1 we can
easily build the following arrays:

ElementsToSolve:  a d i m n o         

KnownNodes: a b c d e f g h i j k l m n o 
2 0 1 2 1 1 0 0 2 1 1 0 2 2 2 
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ElementsPerNode:

1 a k l b e  
2 o e b 
3 j m 
4 h g c n f  
5 g h 
6 m i 
7 l k j 
8 d f n a e o 
9 d f h    
10 o d 
11 b l 
12 c i m j k a n 
13 i c g     

where ElementsToSolve contains the elements with at least two nodes (for triangulated meshes)
with known distances, KnownNodes is an element list employed to count the number of known
nodes for each element and ElementsPerNodes is a table to hold the elements sharing a node.
Besides the structures accounted here we need one vector to store the status of each node (enabled
or disabled for computation). This additional information is available or is readily built as derived
data structures from typical finite element arrays [21]. Thus, the algorithm can be summarized in
the steps given in Box 1.

Remarks

• Since the ElementsToSolve array represents a buffer to store elements to be used during
the computations it can be set with any desired size and restarted when necessary.

Box 1. Algorithm for computing distance fields in unstructured meshes.

i=0
WHILE there are elements in ElementsToSolve DO :

Recover an element from ElementsToSolve(i)
IF ( number of known nodes is 2) THEN

Compute the unknown node solving Eq. (14)
IF ( real roots were found) THEN

Stores the computed distance
Turns the node recently computed off
FOR each element sharing the node recently computed DO :

Recover the element from ElementsPerNodes
Increment KnownNodes for the element recovered
IF ( element reaches 2 known nodes) THEN

Insert the element in ElementsToSolve
ENDIF

END FOR
ENDIF

ENDIF
increment i

END WHILE
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• At the end of the solution procedure a few nodes with unknown distances may remain due
to the discarded elements with complex roots for Equation (15). For these nodes, we can
estimate a valid distance computing its value at the baricenter of the polyhedron formed by
the known nodes surrounding the unknown node. This task can be easily accomplished since
we have stored the necessary data in the ElementsPerNodes array.

• We are restricting ourselves to examples where the interface passes exactly through the
element nodes. Note that in practical problems the interface commonly cuts the element
edges. In these cases the interface elements can be treated as an element where all of
its nodes have known distances and the algorithm would remain the same as we have
described.

• When working with signed distance fields, the interface elements are easily found through
the search of those elements where a signal change is detected. Note that this task can be
accomplished without having to represent the interface explicitly.

• In order to keep the algorithm as simple as possible we have been adopting to solve the
unknown node always in the fourth local position of the element and directly using Equa-
tion (14) to compute the distance value. This can be accomplished by applying a circular
shift on the element nodal connectivity.

• The proposed algorithm, as observed in the FMM and its variants, does not change the
position of the original interface. It is an attractive feature for multiphase flow problems
employing level set methods since we guarantee that the masses of the phases are preserved
during the redistancing procedure.

Figure 2(a)–(f ) illustrates the first six iterations of the proposed algorithm corresponding to the
mesh and data structures given previously. In this figure the filled black nodes are nodes where
the iteration is being performed, blue elements are those with two known nodes (enabled for
computation) and red elements are elements discarded from the computation since their nodes are
already known (disabled for computation elements).

From Figure 2 we can see that the algorithm advances following the ElementsToSolve list
including and excluding new elements according to the distances evaluation. We can also note that
the algorithm does not march in a sequential manner. It develops the computation by selecting
elements inward and outward indifferently.

3. NUMERICAL TESTS

In this section we will present some numerical tests in order to evaluate the accuracy and effi-
ciency of our scheme to construct valid distance fields in unstructured meshes formed by linear
tetrahedral finite elements. The algorithm, coded in Fortran 90, runs in a Dell Precision 370
workstation (Intel Pentium 4 3.6GHz/ 1Mb/800MHz, 4Gb of DDR2 533MHz SDRAM and
Windows XP Professional).

3.1. Sphere expansion and contraction

In this test, the surface of a sphere with unitary radius centered in a cube with side 4 is used
to evaluate the accuracy of the proposed method. For this problem the analytical solution of the
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Figure 2. Illustration of the first six steps of the algorithm presented in Section 2.2: (a) computing node
‘1’ from element ‘a’, enabling elements ‘e’ and ‘k’ to compute nodes ‘2’ and ‘7’ and disabling element
‘a’; (b) computing node ‘9’ from element ‘d’, enabling element ‘f’ to compute node ‘4’ and disabling
element ‘d’; (c) computing node ‘13’ from element ‘i’, enabling element ‘c’ to compute node ‘4’ and
disabling element ‘i’; (d) computing node ‘3’ from element ‘m’, enabling element ‘j’ to compute node
‘7’ and disabling element ‘m’; (e) computing node ‘4’ from element ‘n’, enabling elements ‘h’ and ‘g’
to compute node ‘5’ and disabling elements ‘f’ and ‘c’; and (f ) computing node ‘2’ from element ‘o’,

enabling element ‘b’ to compute node ‘11’ and disabling elements ‘o’ and ‘e’.
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unsigned distance field can be computed from the following equation:

d(x)=
{‖x‖ − r if ‖x‖�r

r − ‖x‖ if ‖x‖<r
(16)

where x is the position vector and r is the radius of the sphere. The computations were carried out
in three different unstructured meshes with element sizes listed in Table I. Figure 3 shows external
surface clips for the tetrahedral meshes employed.

The unsigned distances, computed with SPH3, for this problem are shown in Figure 4(a) through
isocontours while the details within a narrow-band region corresponding to 4 times the average
edge length (h) inward and outward are given in Figure 4(b).

In order to evaluate the accuracy of the proposed method, the relative error norms of the
computed distance fields were compared to the analytical solution given by Equation (16) for the
three meshes employed. These errors, according to the distance from the interface, are illustrated
in Figure 5.

The results show that the proposed method is able to compute accurate distance fields even
in the worst case, that is, for the coarsest mesh (SPH1) and computing the distance field in the
full range. The errors, considering the whole domain, ranged from 0.59% in the best case (SPH3
mesh) to 1.21% in the worst case (SPH1 mesh).

In level set methods it is common to define a region around the interface, known as narrow
band, and restrict the computations within this region in order to reduce computational efforts.
In this sense, Figure 5 shows that our method is able to find errors lesser than 0.2% for narrow
bands of 2.5h, 4h, and 8h for the SPH1, SPH2, and SPH3 meshes, respectively. These results

Table I. Mesh parameters for the problem of computing a distance function
on a sphere centered in a cube.

Mesh Element size Elements Nodes

SPH1 0.20 48 550 26 366
SPH2 0.15 159 623 28 977
SPH3 0.10 505 458 89 303

Figure 3. External surface clips of the tetrahedral meshes: (a) SPH1: h = 0.20;
(b) SPH2: h = 0.15; and (c) SPH3: h = 0.10.
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Figure 4. Unsigned distance function for the problem of expand/contract a sphere: (a) computed unsigned
distance field and (b) narrow band [−4h,+4h].
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Figure 5. Relative error norms according to the distance from the interface for increasingly refined meshes.

suggest that the proposed scheme is sufficiently accurate to be readily employed in finite element
solvers based on level set methods.

3.2. Cube expansion and contraction

In this case the surface of a box with side 2, centered in a cubic domain with side 4, is expanded
and contracted. This problem is particularly interesting for testing the efficiency of the algorithm
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Table II. Mesh parameters for the problem of computing a distance function
on a cube centered in a box.

Mesh Element size Elements Nodes

CUB1 0.20 60 534 11 408
CUB2 0.15 158 057 28 727
CUB3 0.10 497 595 87 830

Figure 6. External surface clips of the tetrahedral meshes: (a) CUB1: h = 0.20;
(b) CUB2: h = 0.15; and (c) CUB3: h = 0.10.

Figure 7. Signed distance function corresponding to a narrow band of [−4h,+4h] for the problem of
expand/contract a cube: (a) analytic and (b) computed.

to overcome geometries with corners and sharp edges. The element sizes of the different cases
evaluated are listed in Table II while the corresponding meshes are shown in Figure 6(a)–(c).

The solution illustrated in Figure 7(b) shows that the algorithm suffers when folds and corners
are present and the accuracy begins to be lost in regions far from the interface. This assumption is
confirmed through Figure 8, where the relative error norms are plotted according to the distance
from the interface.

For this case, the results presented in Figure 8 show that the proposed algorithm was able to
obtain a distance field with errors around 4% considering the whole domain. The results also
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Figure 9. Differences between the analytic and computed solutions.

reveal that errors beneath 1% were obtained within a narrow band of 3h, 4h, and 7h for the CUB1,
CUB2, and CUB3, respectively.

The differences between the computed and the analytical solutions for CUB3 mesh are shown
in Figure 9(a) and (b). This figure shows us that larger differences are concentrated in regions
far from the interface mainly in areas with edges. Furthermore, in regions close to the interface,
differences larger than 0.04 were not verified.
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Table III. Computational parameters.

Nodes Iterations Time (s)

Model Direction Elements Total Known Full model Full model

sph1 in/out 60 749 11 469 321 11 264 0.0468
sph2 in/out 159 623 28 977 686 28 474 0.1406
sph3 in/out 505 458 89 303 1326 88 783 0.4375
cub1 in/out 60 534 11 408 668 11 056 0.0468
cub2 in/out 158 057 28 727 1300 28 307 0.1406
cub3 in/out 497 595 87 830 2684 88 390 0.4375
dam in/out 251 807 46 766 814 47 266 0.2188
indy out 1 602 025 309 657 73 035 244 782 1.3281
subwp out 817 608 292 984 33 685 117 980 0.6094
cyl3D out 446 662 81 991 1260 94 245 0.4219
yf17 out 528 915 97 104 6394 98 030 0.4531
LeMans out 10 264 863 1 858 246 111 972 2 142 343 11.9575

3.3. Real-world test problems

In this section the complexity and performance of the proposed algorithm are discussed based
on the computation of distance fields for various finite element real-world models. These models
were chosen since they are challenging for any distance function algorithm due the presence of
folds, apexes, locus points, corners among others geometric singularities. The models range from
simple and coarse meshes (e.g. sph1, cub1, and dam) to highly detailed and fine models (e.g.
indy, subwp, and lemans) to evaluate the performance of our algorithm. The main computational
parameters for all meshes are listed in Table III. The number of initially known nodes comprises
those nodes where the level set 0 lies. All timings and number of iterations listed in Table III
refer to the algorithm running on the whole computational domain. For some models (the last five
models in Table III) the distance function was computed only in the outward direction. The level
sets obtained for a narrow band around 4h (h based on the average edge length) are illustrated in
Figure 10(a)–(f ).

Table III shows that, for most of the models, the proposed algorithm was able to find a distance
field in a number of iterations lesser than the number of total nodes in the mesh (nnos). We can also
remark that while in the subwp case the algorithm carried out a number of iterations corresponding
to 0.4×nnos, for the LeMans model 1.15×nnos iterations were necessary to compute the desired
distance field. Nevertheless, in all cases computer times were proportional to the number of nodes
in the meshes. The timings data in Table III showed us that for most models the algorithm was
fast and found solutions in less than 2 s. Note that this performance tends to improve if we restrict
the solution within a narrow band.

4. CONCLUSIONS

This work proposed a new method for computing distance functions in unstructured grids imposing
the satisfaction of Eikonal equation at element level. In order to evolve the solution throughout
a computational grid a new advancing front algorithm is also proposed. The algorithm employs
a list of elements available for computing the distance, while updating this list according to the
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Figure 10. Distance fields for several real-world problems: (a) dam break; (b) Indycar car; (c) Los Angeles
class submarine; (d) flow around a circular cylinder; (e) YF17; and (f ) Le Mans car.

algorithm march, inserting, enabling and disabling new elements for further computations. The
method is easy to implement and can be readily employed in finite element solvers since all
information necessary is available or is readily built as derived data structures. The tests showed
that the proposed method is efficient even for large models and can be further speeded up by
restricting the computations within a narrow band. The results also demonstrated that the method
was able to find accurate solutions in computer times proportional to the number of nodes in the
several meshes examined.
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