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SUMMARY

Several performance improvements for finite-element edge-based sparse matrix–vector multiplication
algorithms on unstructured grids are presented and tested. Edge data structures for tetrahedral meshes
and triangular interface elements are treated, focusing on nodal and edges renumbering strategies for
improving processor and memory hierarchy use. Benchmark computations on Intel Itanium 2 and
Pentium IV processors are performed. The results show performance improvements in CPU time
ranging from 2 to 3. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern engineering applications demand accurate and realistic computational solutions. Either
implicit finite-element computational solid or fluid mechanics simulations yield large linear
equation systems which are often solved iteratively. Such solutions may require millions of
sparse matrix–vector multiplications and frequently demand irregular data access driven by
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memory bandwidth and latency. Thus, an efficient simulation code must be optimized to improve
performance regardless the computational environment.

Research on computational performance suggests that performance growth per year is about
60% for processor and 9% for memory [1]. Therefore, processors are about two times faster
each 18 months, whereas the same progress would take about 10 years for memory. A recent
investigation based on Top500 ranking [2] suggests that the doubling growth for processors
performance is achieved each 13.5 months for the top 500 machines and each 16.6 months for
the top 16 machines [3]. As the gap between processor and memory performance continues
growing, an increasing fraction of computer workload will be dominated by memory access and
transfer times rather than by processor time. Therefore, the efficient use of memory hierarchy
resources (referred as cache and registers) turns out to be a critical issue in high-performance
computing [4, 5].

Since processor communication is crucial for parallel performance, the traditional approach
is to partition data followed by some data-reordering algorithm to improve data locality on each
processor separately. Some results have been demonstrating though, that for real applications
problems, the interrelated and simultaneous use of data partitioning and locality algorithms is
a need for practicable results and in some cases, cache reuse may be more important than
reducing communication frequency [5].

Techniques to reorder data along with parallel paradigms such as load-balancing, data parti-
tioning for message passing, shared memory, hybrid and multithreading environment exploit the
minimization of communications among processors, in conjunction with data locality algorithms
to enhance the single-processor performance and then optimizing the overall performance alike
[5–8]. Such techniques evidence that performance is substantially affected by the efficiency of
the memory hierarchy use.

An efficient data-reordering procedure demands a careful analysis of data movement during
the system solution, comprising: CPU time, memory access, memory contention and availability
of CPU registers [4]. Tiling techniques, that is, the process of decomposing an overall compu-
tation into smaller blocks for doing the computation in each block one at a time, are frequently
used for improving performance of matrix–vector products [1, 3, 5, 7–25]. Such techniques are
based on some data-reordering procedures [26] and, additionally, unrolling the product evalua-
tions [27]. The latter procedure gives the compiler the opportunity to schedule loops and also
to reduce loop overheads which contributes to reduce memory latency effects.

For structured grid applications, algorithms can be designed to fit in memory hierarchy,
taking into account data access and layout transformations, and cache associativity and layout
[11]. However, the effects of memory hierarchy over final performance are not as obvious as a
measurable parameter, related on how precisely data locality can contribute to cache use. Cache
misses are difficult to model prior to computation, but may be measured after that [11]. In
this context, data locality models [4, 14, 22] are employed in the evaluation of such parameter
producing good results.

An efficient data locality management is mandatory, mainly for memory hierarchies with
small caches, since the number of cache misses is more important for performance than the
number of floating point operations. Thus, optimizations techniques based on memory-centric
perspective, rather than flop-orientation, have been a trend [13] to achieve an effective use of
the memory hierarchy.

For unstructured grids the memory accesses is irregular and it is not possible to predict its
behaviour. In this case, cache optimizations depend less on the technical details of cache than
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for structured grids, and indirect addressing harms the performance. The number of cycles to
directly access data stored sequentially or not is the same, whereas the number of cycles for
indirect access strongly depends on how data are stored (sequentially or not) [4]. This explains
the great impact of data renumbering strategies on codes with a high proportion of indirect
addressing compared to other operations. This concept suggests that in some cases it is more
important to optimize indirect addressing accesses by data locality than simply reducing the
number of these operations.

The data structure migration from element-based to edge-based observed since the last
decade was motivated, among other factors, by the sparse matrix computations that arise from
finite-element implementations [21, 28]. Edge-based data structures are an effective optimization
technique since they provide reductions of floating point (flop) and indirect addressing (i/a)
operations [20, 23], storage requirements and also improve memory access. As a result, the over-
all computational performance increases significantly, even when compared to the compressed
row storage (CSR) scheme [23]. Edge optimization techniques have great potential, even for
quadrilaterals and hexahedra, for which its implementation involves greater complexity [20, 23].

This paper presents performance results of several edge-based matrix–vector multiplication
algorithms obtained in current processors. Computational optimizations focus the memory hier-
archy and intend to minimize indirect addressing, floating point operations and registers use for
unstructured grids composed by linear tetrahedra. Unstructured data are handled by reordering
algorithms to improve data locality of nodes, edges and elements. All these concepts run quite
suitably into the edge-based data structure paradigm.

Based on the nodal renumbering algorithms and concepts proposed in References [13, 16, 18]
and edge renumbering algorithms proposed in Reference [20], algorithms for one and three
degrees of freedom per node (hereafter, referred as dof) problems were developed, implemented
and intensively tested. The techniques employed try to minimize indirect addressing operations.
A sorting of edges, in increasing order by the edge first node number (namely hereafter,
reduced i/a), halves the indirect addressing operations of the edge-based matrix–vector product
algorithm [16].

Additionally, data locality algorithms were used in association with special edge groupings,
which improve the edge-based matrix–vector product algorithm. This was implemented for
tetrahedra, grouped into three and six edges, named, respectively, superedge3 and superedge6
for both monophasic flow and geomechanics problems [20]. For the latter, it was proposed and
implemented an edge-based interface element with special groupings named superedge4 and
superedge9, comprising groups of four and nine edges, respectively [29].

All these groupings were compared to the reduced i/a edge concept, in cache-based machines
and CPU-pipelined machines. Furthermore, an unrolled version of the matrix–vector multipli-
cation algorithm for reduced i/a scheme was also proposed and tested, along with a chunkwise
version for both schemes (superedge and reduced i/a). In addition, the alternative right-hand
side evaluation in the matrix–vector product algorithm proposed by Löhner and Galle [16] was
also implemented and tested.

Related to memory dependency, lists of edges are built where no pair of nodes in the
same edge list shares the same node. This arrangement is referred here as nodal disjointing
and is responsible for about 70% of the execution time spent in TLB (translation look-aside
buffer) misses [13]. This lack of performance is reduced by an appropriate reverse Cuthill
McKee (RCM) [26] algorithm in conjunction with edge and element sorting according to node
numbering.
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This work is organized as follows. In Section 2, the complexity of edge-based matrix–vector
product algorithm is evaluated considering memory access, data locality and floating point
operations. Section 3 presents the nodal reordering algorithm for reduced i/a list assembly
proposed in Reference [16], and also briefly comments on the superedge grouping algorithm.
Section 4 shows and comments performance studies in three problems. Finally, Section 5
presents our concluding remarks.

2. EDGE-BASED DATA STRUCTURES

Sparse matrix–vector multiplication algorithms may be considered the kernel of iterative solution
methods. As a prototype of such procedures, the edge-based Laplacian loop algorithm as
proposed in Reference [16], is presented in Algorithm 1 and is used as a pattern of comparison
to other alternatives. This algorithm comprises 1 dof.

Algorithm 1
Laplacian loop for a single edge sparse matrix–vector product.

do edge = edge_begin, edge_end
eq_1 = lm(1,edge)
eq_2 = lm(2,edge)
ap = a(edge) * (u(eq_2) - u(eq_1))
p(eq_1) = p(eq_1) + ap
p(eq_2) = p(eq_2) + ap

end do

This loop generates 4 i/a fetches, 2 i/a stores (resulting in six memory accesses) and four
flops per edge. Array lm stores equation numbers. In order to achieve a good balance be-
tween memory accesses and flops, reordering techniques are suggested in the literature such
as superedges [19, 20] and reduced i/a edges [16]. The superedge scheme reaches good bal-
ance of i/a and flops [30] without complex preprocessing codes [20]. In this case, computer
costs are just related to the new order of the edge list, considering the edges agglomerated,
in geometric sense, for example, in tetrahedral shape, swept by stride of six edges. The resulting

Table I. Computational parameters for matrix–vector multiplica-
tion algorithm for simple edge and superedges from tetrahedron

for Laplacian loop.

Structure Fetches Stores Flops Reduction factor

Simple edge 4 2 4 1.0 =1.0
Superedge6 8 4 24 0.7/6 = 0.12
Superedge3 6 3 15 0.2/3 = 0.07
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code for Laplacian RHS evaluation comprising one dof is presented by Algorithm 2 [16, 20],
for superedge6:

Algorithm 2
Laplacian loop for superedge sparse matrix–vector product.

do edge = edge_begin, edge_end, 6
eq_1 = lm(1,edge)
eq_2 = lm(2,edge)
eq_3 = lm(1,edge+3)
eq_4 = lm(2,edge+3)
p1 = u(eq_1)
p2 = u(eq_2)
p3 = u(eq_3)
p4 = u(eq_4)
ap1 = a(edge) * (p2 - p1)
ap2 = a(edge) * (p3 - p2)
ap3 = a(edge) * (p3 - p1)
ap4 = a(edge) * (p4 - p1)
ap5 = a(edge) * (p4 - p2)
ap6 = a(edge) * (p4 - p3)
p(eq_1) = p(eq_1) + ap1 + ap3 + ap4
p(eq_2) = p(eq_2) - ap1 + ap2 + ap5
p(eq_3) = p(eq_3) - ap2 - ap3 + ap6
p(eq_4) = p(eq_4) - ap4 - ap5 - ap6

end do

This loop requires 8 i/a fetches, 4 i/a stores (resulting in 12 memory accesses) and 24 flops
for one superedge consisting of six edges. In previous works [20, 30], it was found that this
kind of superedge (among several alternatives) achieves the best results for tetrahedral meshes
in large-scale unstructured grid problems. For those grids, it was observed in Reference [20]
that usually 70% of all edges can be grouped as superedges of six edges, 20% in superedges of
three edges and 10% remains as simple edges. The equivalent code for one tetrahedral element
comprises 8 i/a fetches, 4 i/a stores and 32 flops. A comparison among these parameters for
these data structures is presented in Table I [20].

According to References [20, 22] and considering Table I, the superedge implementation
reaches global values of 8 × 0.12 + 6 × 0.07 + 4 × 0.1 = 1.78 fetches, 4 × 0.12 + 3 × 0.07 +
2 × 0.1 = 0.89 stores and 24 × 0.12 + 15 × 0.07 + 4 × 0.1 = 4.33 flops per edge, thus saving
56% for memory accesses although overcharging 8.3% in flops when compared to simple edge
implementation.

Geomechanical modelling often requires the simulation of faults or other contact discontinu-
ities. An edge-based implementation of the interface triangular element proposed in Reference
[29] was developed to render the code with a single data structure. For these elements, the
superedge groupings are named superedge4 and superedge9, corresponding to four and nine
edges grouped, respectively. Table II outlines computational parameters for superedges arising
from tetrahedra and interface elements, comprising three dof. Estimates in columns (b) and (d)
are majored, respectively, by factors 1.5 and 6. These factors represent the observed ratio of
edges by number of elements for each element type in a typical unstructured mesh.
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Table II. Computational parameters for matrix–vector multiplication algo-
rithm for superedges from tetrahedron and interface elements for geome-

chanical problems with three dof.

Tetrahedron Edge tetrahedra Interface Edge interface
Parameter (a) (b) (c) (d)

flops 252 54 108 36
i/a 36 27 54 108

Table III. Comparison of computational parameters for
matrix–vector multiplication algorithm for reduced i/a

and superedges for three dofs.

Group/parameter flops i/a flops/(i/a)

Simple edge 36 18 2.0
Superedge3 130 27 4.8
Superedge6 268 36 7.4
Superedge4 190 36 5.3
Superedge9 436 54 8.1
Reduced i/a 39 9 4.3

An alternative to reduce i/a is to convert an edge-based loop into a vertex-based loop [13]
in which the edges are arranged in such a way that the first node always has the lower number
and the first node number increases as the edge number increases with stride one. This loop
reuses vertex-based data items in most or all of the accesses several times before discarding it.
This approach increases flops but reduces i/a operations, whereas the edge has to be processed
twice. This procedure, used along with nodal reordering for bandwidth reduction, results in
a significant reduction of TLB misses [13]. Considering the second node [16] though (thus,
the whole edge) in conjunction with node and edge number increasing with stride 1, the RHS
evaluation can be changed from vertex-based to edge-based as shown in Algorithm 3, for 1 dof,

Algorithm 3
Laplacian loop for reduced i/a edge for sparse matrix–vector product.

do edge = edge_begin, edge_end
eq_1 = shift + edge
eq_2 = lm(2,edge)
ap = a(edge) * (u(eq_2) - u(eq_1))
p(eq_1) = p(eq_1) + ap
p(eq_2) = p(eq_2) + ap

end do

where shift is the difference between the equation number of the current edge and the
equation associated to the first node.

Algorithm 3 generates 2 i/a fetches, 2 i/a stores and five flops per edge. Table III shows
a comparison of computation parameters for the matrix–vector multiplication algorithm for
reduced i/a and superedge schemes, again, considering three dof.

In Table III, the computational intensity (here defined as the ratio between flop and i/a
operations) of the reduced i/a scheme is lower than the superedges, indicating a minor potential
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for optimization. Indeed, if the reduction factor shown in the last column of Table I is considered
as typical for a mesh without interfaces, then a computational intensity of 3.77 will be found,
resulting from 17.55 flops and 4.65 i/a per edge. However, the flops and i/a operations have
to be weighted based on CPU bias for each scheme.

3. NODAL AND EDGE RENUMBERING

According to Reference [16], a nodal renumbering algorithm designed for an efficient memory
handling, trying to yield uniform memory access and avoid contention, is shown in Algorithm 4.

Algorithm 4
Nodal renumbering algorithm.
Initialization:

From the edge-connectivity array lnoed
obtain the nodes that surround each node;

Store the number of nodes surrounding each node: lpsup(1:npoin);
Set npnew = 0;

Node Renumbering:
do while (npnew.ne.npoin)

Obtain the node ipmax with the maximum value of lpsup(ip);
npnew = npnew + 1
lpsup(ipmax) = 0;
do for all nodes jpoin surrounding ipmax

lpsup(jpoin) = max(0,lpsup(jpoin) - 1)
end do

end while

The critical point in Algorithm 4 is to obtain the node with maximum quantity of neighbours.
This step presents linear time complexity according to Reference [18] and the normalized CPU
time results for the code implemented here are depicted in Figure 1 for eight samples. It
can be observed that indeed an almost linear behaviour is observed in practice. However, this
reordering procedure can lead to inefficient use of memory hierarchy due to the jump in the
nodal numbering per edge. It is suggested a two step renumbering procedure by Löhner and
Galle [16]. In the first step, the nodes are ordered by a bandwidth minimization technique
[26] and, in the second, the mesh is reordered according to Algorithm 4, not at once, but
progressively in groups of nodes corresponding to the average bandwidth.

On the other hand, the main idea behind the superedge grouping algorithm is to check every
element, marking all unused edges as a group of superedge6 or superedge3, for tetrahedra
and superedge4 and superedge9 for interface elements, assembling edge lists. In this work, the
RCM algorithm [26] was used to improve data locality.

In all cases, the element list is reordered according to edge order and the nodal element
connectivity is reordered locally to improve cache use [18]. The examples will graphically
illustrate the effects of these reordering actions over nodes, edges and elements.
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Figure 1. Time complexity for nodal renumbering algorithm.

Table IV. Basic hardware configurations.

Platform CPU RAM Cache

Pentium IV 3.6 GHz 4 GB/533 MHz L2 1 MB
Itanium 2 1.3 GHz 8 GB/266 MHz L3 3 MB

4. EXAMPLES

The tests were carried out on Itanium 2 and Pentium IV Intel processors, present in most of
the machines listed in the latest Top500 rank [2] along with Intel Fortran compiler release 7
for Linux systems. The basic hardware configurations are presented in Table IV.

To handle the memory dependency issue in the case of Itanium, the edges and elements
were reordered by a nodal disjointing algorithm [12] and grouped into lists with constrained
length, referred hereafter as vector length. The concept of vector length together with reduced
i/a edge scheme was organized in levels as follows [16]:
Level 0: reduced i/a vector length set to Nvec at the maximum length, without usual i/a edges;
Level 1: reduced i/a vector length, as much as possible, set to Nvec and 64 at minimum,

otherwise; the non-matched edges are arranged as usual i/a edges of Nvec at maximum;
Level 2: reduced i/a vector length, as much as possible, set to Nvec and arranged as usual i/a

edges of Nvec at maximum, otherwise.

The layout of loop over edge lists constrained into specific lengths, hereafter referred as chunk
length, was also implemented and tested in the absence of data dependency issue and therefore
without nodal disjointing algorithm. Both chunk and vector length effects were investigated in
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Table V. Keywords for data arrangement analysis.

Keyword # Description Option

1 Nodal disjointing Yes/No
2 Chunks Yes (List length)/No
3 Nodal ordering Reduced/RCM
4 Edge ordering Reduced (0/1/2)
5 Alternative RHS Yes/No
6 Loop unrolling Yes (2/3/6)/No

the numerical experiments. The unrolled loop layout was also evaluated in the case of reduced
edge at level 0 to keep it up to superedge scheme and compare both. Furthermore, the algorithm
for right-hand side evaluation proposed by Löhner and Galle [16] and referred as ‘alternative
RHS formation’, for matrix–vector multiplication algorithm was tested for 1 and 3 dofs.

The tests were based on ordering data combinations driven by six keywords options as
presented by Table V. These key combinations together with list lengths ranging from 64 to
16 384 and without limit also, with stride 64, lead to several possibilities. The schedule counts
to 216 runs with nodal disjointing algorithm and 128 runs without it. In the latter, 112 runs
were in chunkwise fashion.

The results comprise graphs representing the mesh topology according to its nodal and edge
numbering to show how data is accessed in the loops. The analysis of these graphs helps to
understand the behaviour of the matrix–vector product algorithm based on each data distribution
and to forecast its performance for each data configuration. These graphs were assembled by
connecting the first node of each edge by a grey line and the second node by a black one to
emphasize the data distribution layout. The horizontal axis represents the edges and the vertical
axis represents the nodal connectivity of edges. The most significant data distributions were
presented.

Timing results of matrix–vector multiplication algorithm were presented for some specific
data configuration and loop layout by bar graphs. In this graphs, the vertical axis corresponds
to CPU time and the horizontal axis the specific data configuration and/or loop layout schemes.
The most significant timing results were presented.

4.1. Potential flow around a submarine

This problem consists of a three-dimensional simulation of the potential flow around a Los
Angeles class submarine [15]. The PCG solver converged after 350 iterations, for a relative
residual norm decrease of six orders of magnitude. The mesh comprises 504 947 tetrahedral
elements and 92 564 nodes, resulting in 623 003 edges, with 6.47% grouped as superedge3 and
53.97% grouped as superedge6. Figure 2 shows a view of the surface mesh of this model.

Table VI shows the percentage of reduced i/a edges (Red %) and the vector length for the
submarine mesh. According to Table VI, a considerable amount of reduced edges is reached,
even when using large vector lengths for level 1, except for variable vector length at level 2.

Table VII shows the vector length for edges arranged as simple edges or superedges. The
entries indicate a more regular group formation around the imposed vector length, even for
larger vector length values, than reduced i/a scheme, implying in a better behaviour of the
former during computations.
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Figure 2. Surface mesh of Los Angeles class submarine.

Table VI. Vector length for reduced i/a scheme for submarine mesh.

Nvec

Level Type 64 128 256 512 1024 2048 Free

0 Red % 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nvec avg 63 124 234 403 606 809 1091

1 Red % 98.2 98.9 99.1 99.1 99.1 99.1 99.1
Nvec avg 64 126 243 431 674 935 1337

2 Red % 98.2 96.2 91.6 85.2 79.6 70.3 28.9
Nvec avg 64 128 254 505 994 1929 10 559

Table VII. Vector length for superedge scheme for submarine mesh.

Nvec

Data structure 64 128 256 512 1024 2048 Free

Simple 64 128 255 506 1000 1953 12 714
Super S6 60 126 252 509 1016 2025 14 618

S3 63 126 255 510 1007 2014 10 072
One edge 64 128 256 510 1019 2004 11 205

Table VIII shows the reordering times on Pentium IV. There is a trend of 75% overcharge
in time considering the ratio between reduced i/a and superedge scheme. Note though that the
reduced edge algorithm comprises both nodal and edge renumbering tasks while the superedge
scheme just performs the edge renumbering task.

The resulting edge numbering for the RCM nodal ordered submarine mesh is illustrated in
Figure 3. The edge list is sorted increasingly by first node after RCM algorithm. This picture
corresponds to simple edge arrangement without nodal disjointing algorithm. It is clear the
nodal agglomeration as edge number increases; the lesser the black line amplitude, the better
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Table VIII. Timings for renumbering algorithms in
Pentium IV (in s).

Edges Renumbering
Scheme generation kernel Total

Superedge 1.21 2.12
0.91

Reduced 2.16 3.07

Figure 3. Nodal distribution according to the edges in submarine for original mesh: first
edge node in grey and second one in black line.

the data locality. Consequently, we may expect a performance improvement due to a good data
fitting into the cache. It is important to note though that the grey line is not straight and has
little segments representing the several edges that share the same node.

Figure 4 shows the nodal distribution after use of Algorithm 4 on the mesh and edge ordering
by level 0. The edges are ordered in such a way that the first node (grey line) is accessed
with stride 1 as the edges are swept, forming groups with a saw aspect. The second node
layout is formed by an irregular but well characterized strip, corresponding to a reasonable
data locality, since the amplitude is somewhat large and jumps are not so smooth. This data
distribution forecasts a reasonable use of cache. By comparing Figures 3 and 4, the second
node distribution (black line) of the former is smoother then the latter, revealing its better
adequacy for cache use.

Since the first node is not loaded from memory, the performance of the edge list represented
in Figure 4 is related to the indirect addressing minimization along with the data locality of
the second node. This combination has to be efficient to pay off the lesser data locality of this
distribution in comparison to the one shown in Figure 3. Still related to second node, although
it presents a regular spreading with a saw decay, its amplitude variation seems to be irregular
enough to disturb data locality.
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Figure 4. Nodal distribution according to the edges in submarine mesh after reduced nodal renumbering
for level 0: first edge node in grey and second one in black line.

Figure 5. Nodal distribution according to the edges in submarine mesh after superedge groups
assembling: first edge node in grey and second one in black line.

Figure 5 pictures the edge list arranged as superedges. The same behaviour of the nodal
distribution presented in Figure 3 is kept here but in ranges of groups of six, three and simple
edges, respectively. The number of edges grouped in six edges is larger than the other groups.
The number of groups with three edges is the least.

The straight lines between two groups indicate the gap between the last and the first nodes
of two contiguous edge groups. These jumps do not harm the performance of matrix–vector
product algorithm since each group is handled by its own loop, that is, there are three loops
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Figure 6. Nodal distribution according to the edges in submarine mesh after nodal disjointing
renumbering for simple edge arrangement: first edge node (grey) and second one (black).

in the matrix–vector multiplication algorithm. Thus, in the first range of edges (superedge6),
the compounding edges take the benefits of data locality besides the benefits of superedge loop
(loop unrolling, indirect addressing minimization and optimal registers use). The same is valid
for the second range composed by superedge3.

Important to note in Figure 5 is the capability of assembling superedges groupings without
destroying the good data locality inherited by the simple edge arrangement. Thus, this arrange-
ment represents an increasing of capabilities in efficient use of computer resources, beyond
good use of memory hierarchy. The reordering disturbance is caused mainly in the first edge
as can be seen by its distribution somewhat irregular in some places but with good amplitude
similar to the second node. However, one has to be aware of the computational complexity
of matrix–vector multiplication algorithm for superedge groups. Depending on the architecture,
one has to choose the best combination, which sometimes can comprise only superedges3 and
simple edges.

The effect of nodal disjointing is now shown by Figure 6 which presents the edge nodal
connectivity for simple edge arrangement and glimpses the other ones. The list length is set
to 2048 edges for better viewing purposes, although lists ranging from 64 up to 16 394 and
without limit were assembled and tested. The effect of nodal disjointing is represented by a
saw aspect. This leads to worse cache use, compared to the previous orderings, since this
distribution slightly disturbs data locality. The nodal disjointing algorithm tries to keep the
nodal locality, but assembling edge lists without common nodes. Despite this disturbance, the
nodal locality is better than that observed in the case of the second node in the reduced edge
ordering. This means that in cache-based environments the present arrangement can be even
more efficient than the reduced edge scheme.

Figure 7 shows the CPU times in Pentium IV for the mesh ordered by RCM and Algorithm
4, hereafter indicated in pictures as RCM and R’d, respectively, for both conventional and
alternative RHS evaluation loop layouts, hereafter indicated in pictures as C’RHS and A’RHS,
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Figure 7. Timings of reduced nodal and simple/superedge edge ordered mesh and RHS evaluation
loop versus CPU time for Submarine analysis in Pentium IV.

Figure 8. Timings of reduced nodal and edge level 0 ordered mesh and RHS evaluation loop versus
CPU time for Submarine analysis on Pentium IV.

respectively, for continuous loop mode. That is, without chunks or nodal disjointing algorithm,
for simple and superedge schemes. The best results point to mesh ordered by RCM algorithm
since it provides a better data locality distribution, reaching a ratio of 3 between reduced and
RCM orderings. There is no difference between RHS loop layouts and the superedge scheme
produces gains about 35% over the simple edge one.

Figure 8 shows CPU time results for the mesh ordered by Algorithm 4 and edge ordered by
level 0 along with both conventional and alternative RHS evaluation loop layouts, for continuous
loop mode, besides not unrolled, unrolled into two, three and six edges loop layout, in Pentium
IV, hereafter indicated in pictures as u1, u2, u3 and u6, respectively. The results do not show
significant differences between these loop configurations.
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Figure 9. Timings of reduced nodal and edge ordered mesh and conventional RHS evaluation loop
versus CPU time for Submarine analysis on Itanium 2 for reduced edge scheme.

Figure 10. Timings of reduced nodal and edge ordered mesh and alternative RHS evaluation loop
versus CPU time for Submarine analysis on Itanium 2 for reduced edge scheme.

Figure 9 pictures timing results for the mesh ordered by Algorithm 4 and edges ordered
by reduced levels 0, 1 and 2 comprising loop layouts with vector lengths ranging from 64
up to 2048 and not unrolled, unrolled into two, three and six edges. For Itanium 2 proces-
sor it was also considered the conventional RHS evaluation. The best results come up after
vector length 256 and for loop unrolled into two edges. Results are similar for the three
levels.
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Figure 11. Timings of RCM nodal and simple and superedge edge ordered mesh and conventional
RHS evaluation loop versus CPU time for Submarine analysis on Itanium 2.

Figure 12. Timings of RCM nodal and simple and superedge edge ordered mesh and alternative RHS
evaluation loop versus CPU time for Submarine analysis on Itanium 2.

The scenario presented by Figure 9 is slightly modified when alternative RHS evaluation is
used as shown by Figure 10. This technique reduces timings in almost 25% for worst case,
but keeps on the same behaviour for the further vector lengths. Besides, it can be observed a
subtle trend in smoothing the differences among the three levels for greater vector lengths.

Figures 11 and 12 present results for the mesh ordered by RCM algorithm and simple and
superedge ordered together with vector length loop layouts ranging from 64 up to 2048 edge
lengths, in Itanium 2. Again, the effects are significant for the lesser lengths of 64 and 128,
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Figure 13. SPE10 surface mesh detail.

Table IX. Vector length values for reduced i/a scheme for SPE10 mesh.

Nvec

Level Type 64 128 256 512 1024 2048 Free

0 Red % 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nvec avg 60 113 196 310 436 49 459

1 Red % 93.9 96.0 96.0 96.0 96.0 96.0 94.1
Nvec avg 64 128 255 507 1000 1959.0 5582

2 Red % 93.9 95.8 95.7 95.5 95.4 94.4 74.5
Nvec avg 64 128 256 512 1023 2044 16 064

reaching 20% reduction for simple edge scheme at 64 vector length. These results indicate that
the best scenario of data arrangement is the simple edge with vector length no lesser than 512.

4.2. SPE10

This problem consists in the pressure determination in a heterogeneous three-dimensional five-
spot problem based on the 10th SPE Comparative Solution Model [29]. The model comprises
5 610 000 tetrahedral elements and 1 159 366 nodes, resulting in 6 843 365 edges, with 5.7%
grouped as superedge3 and 61.3% grouped as superedge6. The elements were generated over
a structured hexahedra mesh, similar to a finite difference mesh, dividing each hexahedron in
5 tetrahedra. A surface mesh detail is presented in Figure 13. Table IX shows the percentage
of reduced i/a edges and vector length values according to the edge scheme preprocessing.

By comparing Table IX to Table VI, one can note the little effect of mesh topology over
the nodal renumbering strategy, since the results remain almost unchanged from Table VI. The
differences come from the vector length values over the amount of edges available for lists
assembly. Table X shows the vector length values for usual i/a edges arranged as simple or
superedges.

The following figures show the timing results for matrix–vector multiplication algorithm for
all data and loop layout combinations after 1620 iterations for a relative residual norm decrease
of six orders of magnitude.
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Table X. Vector length distribution for superedge scheme preprocessing
for SPE10 mesh.

Nvec

Data structure 64 128 256 512 1024 2048 Free

Simple 64 128 255 506 1000 1953 11 754
Super S6 60 126 252 509 1016 2025 14 618

S3 63 126 255 510 1007 2014 10 072
One edge 64 128 256 510 1019 2004 11 204

Figure 14. Timings of reduced nodal and edge ordered mesh and conventional RHS evaluation loop
versus CPU time for SPE analysis on Itanium 2.

Figure 14 indicates the best results for reduced level 0 and 1 schemes, organized in lists of
length 2048 and loop unrolled into two edges, considering the mesh ordered by Algorithm 4.
Comparison between this figure and Figure 15 shows the different effects of alternative RHS
evaluation over performance, since it produces gains of about 10% over previous worst results
for lists of length 64 and about 5% for remaining vector lengths but, otherwise, worsen the
best result in about 7%. In this case, these figures show that alternative and conventional RHS
evaluation option is critical and has to be determined experimentally since there is no way to
predict the algorithm behaviour under such data configurations.

Comparing Figures 16 and 17 we may see the great potential for performance optimization
by just changing to the alternative RHS loop layout for this mesh. There is a time reduction of
about 25% for simple and superedges simultaneously. The advantage of the superedge scheme
over simple edge, comprising the registers reuse and flops and i/a reduction, is not enough to
pay off data locality disturbance as can be seen by the gap of about 20%, for the best results.
Regarding vector length, the best results correspond to list lengths greater then 512.
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Figure 15. Timings of reduced nodal and edge ordered mesh and alternative RHS evaluation loop
versus CPU time for SPE analysis on Itanium 2.

Figure 16. Timings of RCM nodal and simple and superedge edge ordered mesh and conventional
RHS evaluation loop versus CPU time for SPE analysis on Itanium 2.

4.3. Sedimentary basin

This example simulates the interaction of four blocks of a sedimentary basin separated by three
geological faults. Geometry and material properties are similar to a portion of a sedimentary
basin in the northeast of Brazil. The blocks were submitted to a longitudinal compression. All
displacements on top are free and, at the basis and lateral surfaces, normal displacements are
prescribed. Two meshes were used and the first one comprises 26 860 nodes, 94 058 linear

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 66:431–460



450 A. L. G. A. COUTINHO ET AL.

Figure 17. Timings of RCM nodal and simple and superedge edge ordered mesh and alternative RHS
evaluation loop versus CPU time for SPE analysis on Itanium 2.

Figure 18. Surface mesh 1 of sedimentary basin model.

tetrahedral elements, 12 960 interface elements and 76 380 equations. The resulting number of
edges is 187 266 and 40.08% were grouped in superedge6, 16.99% in superedge3, 8.94% in
superedge9 and 0.88% in superedge4; the percentage of remaining simple edges is 33.12%.
Figure 18 shows a view of the surface mesh of this model.

Table XI shows the percentage of reduced i/a edges and vector length according to this
edge scheme assembly for mesh 1. As one can see in Table XI, the average vector length
obtained does not keep up with the length proposed for level 0 and 1, due to mesh size. The
best results go through up to length of 256. At level 2 though, the vector length obtained is
reasonable up to 512. Table XII shows the vector length for usual i/a edges arranged as simple
edges or superedges in mesh 1. The vector lengths obtained match with the values imposed,
with subtle difference for high values, unless for S4 groups, where the differences are higher,
because of the low quantity of interface elements.
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Table XI. Vector length for reduced i/a scheme for sedimentary basin mesh 1.

Nvec

Level Type 64 128 256 512 1024 2048 Free

0 Red % 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nvec avg 64 128 233 354 482 569 670

1 Red % 84.1 85.2 85.3 85.2 85.4 85.2 85.4
Nvec avg 64 126 236 402 601 798 982

2 Red % 81.0 75.2 68.3 58.3 46.8
Nvec avg 128 254 501 962 1804

Table XII. Vector length for superedge scheme for sedimentary basin mesh 1.

Nvec

Data structure 64 128 256 512 1024 2048 Free

Simple 64 128 255 507 1007 1985 6731
Super S9 63 126 251 501 1011 2000 11 907

S6 60 126 251 503 988 1899 9820
S4 63 125 235 428 612 920 940
S3 63 126 252 501 968 1737 6082

One edge 64 127 253 500 983 1923 6754

Table XIII. Timings for renumbering algorithms in
Pentium IV (in s) for mesh 1.

Edges Renumbering
Scheme generation kernel Total

Superedge 0.24 0.58
0.34

Reduced 0.78 1.12

Table XIII shows the time spent for preprocessing phase in the Pentium IV for mesh 1. The
values presented comprise the edges generation and the renumbering procedures for edges in
the case of superedges and edges and nodes in the case of reduced edges.

The nodal connectivity of edges for both meshes ordered by RCM is similar to Figure 3
(submarine mesh), that is, the nodal distribution along edges is regular and rather favourable
for efficient cache use, because the second node amplitude is small along all edges. Equivalent
similarity occurs for the nodal connectivity of reduced edges, which presents the second node
distribution with irregular amplitude.

The nodal connectivity of edges is now submitted to superedge technique to assembly S6,
S3, S9 and S4, that is, superedges groups set by six, three, nine and four edges, respectively.
The resulting nodal connectivity of edges is shown in Figure 19 for mesh 1. The S6 and
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Figure 19. Nodal distribution according to the edges in mesh 1 after superedge groups assembling:
first edge node in grey and second one in black line for mesh 1.

S3 groups came out from tetrahedra and S9 and S4 from interface elements. The groups are
characterized by four ramps and the remaining, simple edges are in the last ramp. Each ramp
corresponds to S6, S3, S9, S4 and simple edge connectivity respectively. All sets present good
data locality and forecast good use of cache facilities. Again (as before in the submarine
mesh—viz. Figure 5), the edge renumbering in superedge groups does not disturb data locality
of original edge list.

Edge distributions are sensitive to the nodal disjointing technique, and similarly to the
submarine mesh, present a saw aspect. For reduced edge level 0 though, the effect is more
impacting than for the submarine mesh. In general, for all distributions with nodal disjointing,
it is observed a worsening in data locality.

Due to material non-linearities, the trade-off between matrix–vector products and Jacobian
matrix coefficient and residuals evaluations has to be weighted regarding the element connec-
tivity by edges. Besides, the nodal connectivity of elements plays an important role during
stress integration computations.

For mesh ordered by RCM, these connectivities present good data locality, similar to edge
connectivity by nodes, even when organized as superedges. However, for mesh ordered by
Algorithm 4, level 0, the resulting distribution reveals very bad data locality and forecast bad
performance of this distribution during non-linear computations.

Timing results on Pentium IV for mesh 1 were collected after 720 PCG iterations, that is,
for a relative residual tolerance of 10−6. Figure 20 shows timing results for mesh 1 ordered by
RCM and Algorithm 4 for both conventional and alternative RHS evaluation loop layouts, for
continuous loop mode. That is, without chunks or the nodal disjointing algorithm, for simple
and superedge schemes. The best results are for the mesh ordered by RCM algorithm, due to its
better data locality, reaching a ratio of 2 between reduced and RCM orderings. The alternative
RHS loop layouts produce reductions of about 15% in time compared to the conventional one.

Figure 21 shows the timing results in Pentium IV for mesh 1. Nodes are ordered by
Algorithm 4 and edges ordered by level 0 along with both conventional and alternative RHS
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Figure 20. Timings of RCM nodal and simple and superedge edge ordered mesh and conventional
RHS evaluation loop versus CPU time for mesh 1 analysis on Pentium IV.

Figure 21. Timings of RCM nodal and simple and superedge edge ordered mesh and alternative RHS
evaluation loop versus CPU time for mesh 1 analysis on Pentium IV.

evaluation loop layouts, for continuous loop mode, besides not unrolled, unrolled into two, three
and six edges loop. The results do not show significant differences between configurations with
a slight advantage of alternative RHS over the conventional one. Unrolled loops are subtly
more efficient then not-unrolled, with reductions of about 10%.

The second mesh comprises 371 244 nodes, 2 064 940 linear tetrahedral elements, 17 317
interface elements and 1 098 257 equations. The resulting number of edges is 2 553 563 of
which 63.47% were grouped in superedge6, 12.75% in superedge3, 0.99% in superedge9 and
0.03% in superedge4 and the percentage of remaining simple edges is 22.76%. Figure 22 shows
a detail of the surface mesh around a fault.
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Figure 22. Detail of surface mesh 2 of sedimentary basin model.

Table XIV. Vector length for reduced i/a scheme for sedimentary basin mesh 2.

Nvec

Level Type 64 128 256 512 1024 2048 Free

0 Red % 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Nvec avg 64 126 234 398 598 786 1069

1 Red % 93.7 94.4 94.7 94.8 94.8 94.8 94.8
Nvec avg 64 127 243 439 717 1032 1626

2 Red % 91.6 88.5 85.1 81.5 76.8
Nvec avg 128 256 511 1020 2025

Table XV. Vector length for superedge scheme for sedimentary basin mesh 2.

Nvec

Data structure 64 128 256 512 1024 2048 Free

Simple 64 128 256 511 1022 2040 15 110
Super S9 63 125 251 512 1013 1947 12 659

S6 60 126 252 523 1018 2036 15 890
S4 64 127 212 318 780 780 780
S3 63 126 254 423 1014 2010 13 565

One edge 64 128 255 521 1019 2018 13 206

Table XIV shows the percentage of reduced i/a edges and vector length according to this
edge scheme assembly for mesh 2. The benefits over reduced edge assembly from increasing
mesh size can be observed by comparing Tables XIV and XI. However, the average vector
length has the same behaviour, without further improvements.

Table XV shows the vector length for usual i/a edges arranged as simple edges or superedges
in mesh 2. The benefits of mesh size increasing are observed granting steady average vector
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Table XVI. Timings for renumbering algorithms in Itanium
2 (in s) for mesh 2.

Edges Renumbering
Scheme generation kernel Total

Superedge 6.13 12.64 18.77
Reduced level 0 42.33 48.46

Figure 23. Timings of reduced nodal and edge ordered mesh and conventional RHS evaluation loop
versus CPU time for mesh 2 analysis on Itanium 2 for reduced edge scheme.

lengths up to 2048, mainly for simple edge scheme. For S4 superedge type however, the vector
length sticks at 780 since this is the total number of this group type. By comparing Tables
XII and XV, it can be concluded that refining the fault mesh leads to an increasing amount
of S9 due to S4 assembly decreasing. An overall comparison between superedges assembly of
meshes 1 and 2 indicates ratios of S6, S3, S9, S4 and simple edges of about 1.6, 0.75, 0.11,
0.034 and 0.69, respectively.

Table XVI shows the time spent for preprocessing phase in the Itanium 2 for mesh 2. The
values presented comprise the edges generation and the renumbering procedures for edges in
the case of superedges and edges and nodes in the case of reduced edges for level 0 only.

Figures 23–26 present timing results for the mesh 2, which were collected after 3180 PCG
iterations, that is, convergence was achieved for a relative residual tolerance of 10−6.

The effect of both modes for RHS evaluation loops is shown in Figures 23 and 24. Dis-
regarding the vector lengths, the unrolling level suffers from RHS alternatives as a pattern.
Considering the use of RHS loop mode from conventional to alternative, for the non-unrolled
loops there is a gain of about 10%; unrolling loops in two edges produces significant gains, of
about 30%; unrolling loops in three and six edges worsen results in about 5%. These figures
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Figure 24. Timings of reduced nodal and edge ordered mesh and alternative RHS evaluation loop
versus CPU time for mesh 2 analysis on Itanium 2 for reduced edge scheme.

Figure 25. Timings of RCM nodal and simple and superedge edge ordered mesh
and conventional RHS evaluation loop versus CPU time for mesh 2 analysis on

Itanium 2 for simple and superedge schemes.

illustrate the complete unforeseeable behaviour of this scenario regarding to the choice of RHS
evaluation loop modes.

Figures 25 and 26 shows a gain of about 25% in performance for the superedge scheme
when the mesh is ordered by RCM algorithm. The performance of simple edge keeps stable
without relevant changes and sticks as best performance of data and loop layout combination
for this scenario.
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Figure 26. Timings of RCM nodal and simple and superedge edge ordered mesh and alternative RHS
evaluation loop versus CPU time for mesh 2 analysis on Itanium 2 for simple and superedge schemes.

5. CONCLUSIONS

This work presented a comparison of performance results among several edge-based data struc-
tures for finite-element analyses driven by iterative solvers. Several optimizations techniques
were employed into the symmetric matrix–vector product algorithm, focusing on serial per-
formance. The analyses comprised three-dimensional domains for flows and geomechanical
problems modelled by unstructured grids composed of tetrahedral elements.

As a critical issue in iterative solvers behaviour, the underlying computational parameters
of the edge-based matrix–vector product algorithm were investigated, considering CPU and
memory hierarchy use, that is, floating point operations (flops), indirect addressing operations
(i/a), registers reuse and data locality concepts. Serial processing optimization was focused,
since it is expected that the local processor improvements are spread to multiprocessor systems
[14]. Some additional devices were investigated, namely: loop unrolling, loop splitting in chunks
and memory sharing (by residual vector) during right-hand side evaluations [16].

Regarding all these concepts, Table XVII briefly presents the main characteristics for
1 dof/node edge-based matrix–vector multiplication loop, emphasizing the computational com-
plexity of each configuration. In this table, ‘Var’ is the number of variables within the loop,
‘i/a/edge’ means indirect addresses per edge and ‘flops/edge’ the number of floating point
operations per edge. The final column remarks the main characteristics of each configuration,
based on a complete compilation over hundreds of results collected.

Further, the final performance is significantly affected by loop layout alternatives. Based on
results, it was observed that for the Pentium IV, regarding 1 dof/node and all edge schemes, the
loop unrolling technique and alternative RHS evaluation were not worth use unless when using
the latter one along with loop splitted into chunks for superedge scheme, producing gains of
about 30% compared to conventional RHS evaluation layout as can be concluded by observing
Figure 7.
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Table XVII. Edge schemes and main characteristics for 1 dof/node.

Scheme Var i/a/edge flops/edge Remarks

Simple edge 13 6 4 • Biased to data locality exploitation;
• Simplest and most flexible structure

Superedge6 38 12/6 31/6 • Biased to data reuse by registers;
Superedge3 24 9/3 15/3 • Data locality disturbed by superedge assembly;

• Most complex structure
Reduced 0 12 3 5 • Data locality disturbed by reduced scheme assembly

For Itanium 2 under the same conditions, loop unrolling for reduced scheme is recommended
into two edges as can be seen in Figure 14 and splitting into chunks greater then 128 is a
better choice. The best results are observed for loop unrolled into two edges and chunks of
2048 edges. Although the alternative RHS evaluation loop has produced a favourable impact
of about 10% in time reduction for the unrolled loop, it is not recommended since the final
trade off is not worth as can be concluded by comparing Figures 14 and 15. These effects are
not perceivable for the submarine mesh as shown in Figures 9 and 10.

Regarding simple and superedge schemes, the combination of chunks greater then 512
edges with alternative RHS evaluation loop produced the best results of all analyses and are
strongly recommended mainly for simple edges schemes which corresponds to 20% in gain over
superedge one.

For 3 dof/node, results shown that the more complex the algorithm, the simpler the structure
together with good data locality distribution is needed to reach good results. The best results
point to simple edge scheme with no sensitivity to chunk length and even RHS layout loop type
as shown by Figures 25 and 26. By considering superedges, in other words, a more complex
scheme, the alternative RHS feature can be used in order to minimize algorithm complexity
but not enough to reach simple edge results.

The lack of data locality produced by the reduced (i/a) scheme does not allow better results
when compared to simple edges, although there are more i/a operations in the latter compared
to the former (viz. Table XVII). Further, it is important to note that even this drawback can
be minimized by alternative RHS evaluation loop, this is not enough to pay off, as can be
observed by comparing Figures 23 and 24.

Table XVIII presents the summary of all results related to machine, dof/node, scheme and
gives some remarks about each configuration. In all results, data locality is the backbone for
best results.

The overall results reveal a great variety of behaviour for all loop layouts, underlying physics
that is the number of degrees of freedom per node, and processor types, besides mesh size.
Considering specific cases of configurations, that is, the synergy between data and architecture,
the gains in processing time are significant. However these configurations are almost impossible
to be set previously. Regarding all these characteristics and consequently the awful task of
searching the best combination of data structure and compiler options for a specific platform,
as a future work, it is proposed the development of an auto-configurable set up software based
on partial timing results in order to achieve the best configuration comprising all variables, that
is, the physics involved, hardware platform and compiler characteristics, by just choosing the
best timing results.
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Table XVIII. Results summary (DOF = degrees of freedom per node; ND = nodal disjointing).

Platform DOF/ND Scheme Remarks

Pentium IV 1/No • RCM • Both edge and nodal reduced ordering produce bad results;
• Superedge • Sensitivity to chunk length;
• Chunks of 128 • Little sensitivity to loop unrolling;

edges • Great sensitivity to data locality;
• No sensitivity to RHS evaluation mode.

3/No • RCM • Both edge and nodal reduced ordering produce bad results;
• Simple edge • No sensitivity to chunk length;
• Alternative RHS • Worst results for not unrolled loop; results equally distributed

evaluation loop for loop unrolling in two, three or six edges;
• Great sensitivity to data locality;
• Little sensitivity to RHS evaluation mode.

Itanium 1/Yes • RCM • Both edge and nodal reduced ordering produce reasonable
results;

• Simple edge • Sensitivity to chunk length;
• Chunks greater • Sensitivity to loop unrolling;

than 512 edges • Great sensitivity to data locality;
• Sensitivity to RHS evaluation mode.

3/Yes Simple edge • Good results for RCM simple edge scheme;
• Bad results for superedge under conventional RHS evaluation

loop layout;
• Little sensitivity to chunk length;
• Great sensitivity to data locality;
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