
Parallel Edge-Based Inexact Newton Solution of Steady
Incompressible 3D Navier-Stokes Equations

Renato N. Elias, Marcos A. D. Martins, Alvaro L. G. A. Coutinho

Center for Parallel Computations and Department of Civil Engineering
Federal University of Rio de Janeiro, P. O. Box 68516,

RJ 21945-970 – Rio de Janeiro, Brazil
{renato,marcos,alvaro}@nacad.ufrj.br

Abstract. The parallel edge-based solution of 3D incompressible Navier-Stokes
equations is presented. The governing partial differential equations are
discretized using the SUPG/PSPG stabilized finite element method [5] on
unstructured grids. The resulting fully coupled nonlinear system of equations is
solved by the inexact Newton-Krylov method [1]. Matrix-vector products
within GMRES are computed edge-by-edge, diminishing flop counts and
memory requirements. The non-linear solver parallel implementation is based in
message passing interface (MPI). Performance tests on several computers, such
as the SGI Altix, the Cray XD1 and a mini-wireless cluster were carried out in
representative problems and results have shown that edge-based schemes
require less CPU time and memory than element-based solutions.

1 Introduction

We consider the simulation of steady incompressible fluid flow governed by Navier-
Stokes equations using the stabilized finite element formulation in [5]. This
formulation allows that equal-order-interpolation velocity-pressure elements are
employed by introducing two stabilization terms: the Streamline Upwind Petrov-
Galerkin (SUPG) and the Pressure Stabilizing Petrov Galerkin stabilization (PSPG).

When discretized, the incompressible Navier-Stokes equations give rise to a fully
coupled velocity-pressure system of nonlinear equations due the presence of
convective terms in momentum equation. The inexact Newton method [1] associated
with a proper preconditioned iterative Krylov solver, such as GMRES, presents an
appropriated framework to solve nonlinear systems, offering a trade-off between
accuracy and the amount of computational effort spent per iteration.

Inspired by finite volume methods, edge-based data structures have been
introduced for explicit finite element computations of compressible flows on
unstructured grids composed by triangles and tetrahedra. Soto et al [11] recently
introduced an edge-based approach to solve incompressible flows with an uncoupled
fractional step formulation. The advantages of edge-based schemes with respect to
conventional element-based schemes are a major reduction in indirect addressing (i/a)
operations and memory requirements.

When dealing with large scale problems the use of parallel solvers is an essential
condition and the use of an algorithm able to run efficiently in shared, distributed or
hybrid memory systems has been a motivation for many researchers to turn the solver
strategy more independent of the hardware resources. Therefore, the main goal of this
work is the development of edge-based data structures for the SUPG/PSPG finite
element formulation to solve steady incompressible fluid flows by a parallel inexact-
Newton method.

The remainder of this work is outlined as follows: next section briefly describes the
governing equations and finite element formulation. The third section presents some
remarks on edge-based data structures for unstructured grids. The subsequent section
treats the parallel implementation, results and final comments are summarized in the
last sections.

2 Governing Equations and SUPG/PSPG Finite Element
Formulation

Let sdnΩ ⊂ be the spatial domain, where nsd is the number of space dimensions.
Let Γ denote the boundary of Ω. We consider the following velocity-pressure
formulation of the Navier-Stokes equations governing steady incompressible flows:

() onρ ⋅ − − ⋅ Ωu u f∇ ∇ σ = 0, (1)
on⋅ Ωu∇ = 0, (2)

where ρ and u are the density and velocity, σ is the stress tensor.

The essential and natural boundary conditions associated with equations (1) and (2)
can be imposed at different portions of the boundary Γ and represented by,

= σ =on ; ong hΓ ⋅ Γu g n h (3)

where Γg and Γh are complementary subsets of Γ.

Let us assume following [5] that we have some suitably defined finite-dimensional
trial solution and test function spaces for velocity and pressure, hSu , hVu , h

pS and
h h
p pV S= . The finite element formulation of equations (1) and (2) using SUPG and

PSPG stabilizations for incompressible fluid flows can be written as follows: find
h hS∈ uu and h h

pp S∈ such that h hV∀ ∈ uw and h h
pq V∀ ∈ :

∇ ∇h h h h h h h h: ,d p d q dρ

Ω Ω Ω

⋅ ⋅ − Ω + Ω + ⋅ Ω∫ ∫ ∫w u u f w u u() () ()ε σ

∇ ∇ ∇
1

,
eln

h h h h h h
SUPG

e

p dτ ρ ρ
= Ω

⎡ ⎤+ ⋅ ⋅ ⋅ − ⋅ − Ω⎢ ⎥⎣ ⎦∑∫ u w u u u f() ()σ (4)

[]∇ ∇ ∇ h

1

1
,

eln
h h h h h

PSPG
e

q p d h dτ ρ ρ
ρ= Ω Γ

+ ⋅ ⋅ − ⋅ − Ω = ⋅ Γ∑∫ ∫u u u f w() ()σ

In the above equation nel is the number of elements in the mesh. The first four
integrals on the left hand side represent terms that appear in the Galerkin formulation
of the problem (1)-(3), while the remaining integral expressions represent the
additional terms which arise in the stabilized finite element formulation. Note that the
stabilization terms are evaluated as the sum of element-wise integral expressions. The
first summation corresponds to the SUPG (Streamline Upwind Petrov/Galerkin) term
and the second to the PSPG (Pressure Stabilization Petrov/Galerkin) term. The spatial
discretization of equation (4) leads to a following system of nonlinear equations,

() =F x 0 (5)

where x = (u, p) is a vector of nodal variables comprising both nodal velocities and
pressures and F(x) represents a nonlinear vector function.

Newton’s method is attractive method to solve the system (5) because it converges
rapidly from any sufficiently good initial guess [1]. However, one drawback of
Newton’s method is the need to solve a locally linear system at each stage.
Computing the exact solution can be expensive if the number of unknowns is large
and may not be justified when xk is far from a solution. Thus, one might prefer to
compute approximated linear solutions, leading to the following algorithm,

ALGORITHM IN
for k = 0 step 1 until convergence do
 Find some ηk ∈ [0,1) AND sk that satisfy
 ||F(xk)+J(xk) sk|| ≤ ηk ||F(xk)|| (6)
 set xk+1 = xk + sk

for some adaptively chosen ηk ∈ [0,1), where || • || is a norm of choice. The Jacobian,
J(xk), is numerically approximated using Taylor’s expansions as described by
Tezduyar [6]. This formulation naturally allows the use of an iterative solver like
GMRES or BiCGSTAB: one first chooses ηk and then applies the iterative solver to
(6) until a sk is determined for which the residual norm is satisfied. In this context ηk
is called as a forcing term and can be specified in several different forms as described
in [2].

3 Edge-Based data structures

Edge-based data structures operate directly in the nodal graph of the underlying
unstructured grid. It was shown in [3] that for unstructured grids edge-based data
structures have more advantages than element-by-element (EBE) and compressed
storage row (CSR) schemes. In the edge-based strategies, global coefficients are
computed and stored in single DO-LOOPS making the evaluation of the left and hand

sides faster and less memory demanding. We may derive an edge-based finite element
framework by noticing that the element matrices can be disassembled into their
contributions as shown in [7, 8]. For the set of all elements sharing a given edge, we
may add their contributions, arriving to the edge matrix, which for the problem at
hand is a non-symmetric 16 × 16 matrix. In Table 1 we compare the storage
requirements to hold the coefficients of the element and edge matrices as well as the
flop count and indirect addressing (i/a) operations to compute sparse matrix-vector
products in the Krylov iterative driver element-by-element or edge-by-edge, that is,

1

ne
l l

l=

= ∑Jp J p , (7)

where ne is the total number of local structures (edges or elements) in the mesh and pl
is the restriction of p to the edge or element degrees-of-freedom.

Table 1. Memory to hold the matrix coefficients and computational costs for element and edge-
based matrix-vector products for tetrahedral finite element meshes.

 Memory Flop i/a
Elements 1056 nnodes 2112 nnodes 1408 nnodes

Edges 224 nnodes 448 nnodes 448 nnodes

All data in this table is referred to nnodes, the number of nodes in the finite element
mesh. According to [9], the following estimates are valid for unstructured 3D grids,
nel ≈ 5.5×nnodes, nedges ≈ 7×nnodes, where nedges is the number of edges in the
mesh. We may observe that data in Table 1 favors the edge-based scheme.

4 Parallel Implementation

The parallel inexact nonlinear solver presented in the previous section was
implemented based in the message passing parallelism model (MPI). The original
unstructured grid was partitioned into non-overlapped sub-domains by the use of the
METIS_PartMeshDual routine provided by Metis package [4]. Afterwards, the
partitioned data was reordered to avoid indirect memory addressing and IF clauses
inside hot loops and MPI communications. Therefore, the equation numbers shared by
the partitions were relocated to the last entries of the corresponding arrays.

Most of the computational effort spent during the iterative solution of linear
systems is due to evaluations of matrix-vector products or matvec for short. In our
tests matvec operations achieved 92% of the total computational costs. In element-by-
element (EBE) and edge-by-edge (EDE) data structures this task is message passing
parallelizable by performing matvec operations at each partition level, then
assembling the contribution of the interface equations calling MPI_AllReduce routine
over the last array entries. Finally, it is important to note that edge (and element)
matrix coefficients are computed in single DO-LOOPS also in each partition.

5 Results

This section presents two benchmark problems to analyze the parallel solver
performance. The numerical procedure considers a fully coupled u-p version of the
stabilized formulation using linear tetrahedron elements. The parallel solver is
composed by an outer inexact-Newton loop and an inner GMRES(25) with nodal
block diagonal preconditioned linear solver.

The computations were made on two SGI Altix 3700 systems (32/64 Intel Itanium-
2 CPUs with 1.3/1.5 GHz and 128/256 Gb of NUMA flex memory), and a Cray XD1
system (32 AMD Opteron CPUs with 1.8 GHz). Some portability and mobile
parallelism tests were performed on a mini-cluster fast-ethernet/wireless composed by
4 laptop nodes with Intel Centrino processors and Microsoft Windows platform. The
same code was compiled for three different systems (Intel Fortran 8.1 on SGI Linux
systems, Portland Group Fortran on Cray Linux and Compaq Visual Fortran on mini-
cluster Intel/Windows). No CPU optimizations besides those provided by standard
compiler flags (-O3) were made.

5.1 Three dimensional leaky lid-driven cavity flow

In this well known problem the fluid confined in a cubic cavity is driven by the
motion of a leaky lid. Boundary conditions consist in a unit velocity specified along
the entire top surface and zero velocity on the other surfaces. Table 2 shows the
problem dimensions employed for all parallel performance tests, where in the label
cav-nn, nn means the number of line divisions through the x, y, and z dimensions for
mesh construction purposes. Fig. 1 (left) shows the streamlines for Reynolds 400 for
the cav-101 mesh. We may note the main vortex formation and the singularities at the
cavity corners, typical for this problem. Fig. 1 (right) show the computed vertical and
horizontal velocities at the centerline, together with the recent numerical results of Lo
et al [13] and Shu et al [14]. We may observe that all results are in good agreement.

Table 2. Problem dimensions

 Elements Edges Nodes Equations
cav-31 148,955 187,488 32,768 117,367
cav-51 663,255 819,468 140,608 525,556
cav-71 1,789,555 2,193,048 373,248 1,421,776

cav-101 5,151,505 6,273,918 1,061,208 4,101,106

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

Horizontal velocity (V x)

V
er

tic
al

 v
el

oc
ity

 (V
z
)

Lo et al. [13]
Shu et al. [14]
Present
Lo et al. [13]
Shu et al. [14]
Present

Fig. 1. (left) Streamlines in a leaky lid-driven cubic cavity (right) Characteristic results for
vertical and horizontal velocity at the centerline.

In Fig. 2 (left) is shown the scaled speedup on the SGI Altix computed according to
Gustafson’s law [10] and defined by Ss= n+(1-n) s, where n is the number of
processors and s corresponds to the normalized time spent in the serial portion of the
program. The scalability reached on SGI Altix for the models listed in Table 2 is
shown in Fig. 2 (right). Note that when increasing the problem size the serial fraction
s tends to shrink as more processors are employed. In our tests with SGI Altix 3700
we have employed up to 32 Intel’s Itanium-2 processors and according to [10] the
scaled speedup should be a linear function with moderate slope 1-n such as the line
we have measured and shown in Fig. 2 (right).

2.13x

30.43x

15.69x

8.05x

4.16x

1.00x0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

Number of CPUs

Sc
al

ed
 sp

ee
du

p

Line
M easured

22.20x

28.45x
30.43x 30.19x

0

5

10

15

20

25

30

35

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Serial Fraction

Sp
ee

du
p

Fig. 2. (left) Scaled speedup on SGI Altix for EDE data structure and cav101 model. (right)

Scalability for the models considered.

The scaled efficiency on SGI Altix for EDE data structure is presented in Fig. 3 (left).
Good results may be observed for the cavity models, especially for those with larger
number of degrees of freedom. In some cases efficiencies greater than 100% may be
attributed to cache effects. The time spent when solving the cav-71 problem with EBE
and EDE data structures is plotted in Fig. 3 (right). We may observe that the EDE
solutions were faster than the EBE in all cases. Nevertheless, the CPU time ratios

between EBE and EDE solutions are around 2.5 up to 16 processors. For 32
processors this ratio decreases. This is an indication that as we refine the meshes,
CPU time ratios between EBD and EDE has a tendency to remain around this value.

90

94 91

85

69

99 10
1

99 95

89

10
6

10
4

10
2

99

94

10
7

10
4

10
1

98 95
0

20

40

60

80

100

120

2 4 8 16 32

Number of CPUs

Sc
al

ed
 E

ffi
ci

en
cy

Cav31 Cav51 Cav71 Cav101

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16 32

Number of CPUs

W
al

l t
im

e
(s

ec
on

ds
)

Element
Simple edge

Fig. 3. (left) Scaled efficiency for EDE data structure on SGI Altix. (right) Wall time
comparisons for EBE and EDE data structures for cav-71 mesh.

The inexact nonlinear solver behavior is sketched in Fig. 4 through the decrease of
relative residual (left), GMRES tolerance, and nonlinear iteration time (right). Note
that at the beginning of the solution procedure the linear tolerance is large enough to
allow very fast nonlinear iterations. When a sudden decay in the relative residual is
detected, as may be seen in nonlinear iterations 14 to 24, the inexact nonlinear method
identifies that the desired solution is imminent and the linear tolerance is tightened to
entrap the final solution.

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Nonlinear iteration

lo
g 1

0(
 ||

r|
|/|

|r
0||

)

Cav 51x51x51

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Nonlinear tolerance

G
M

R
E

S
T

ol
er

an
ce

0

500

1000

1500

2000

2500

Iteration tim
e (seconds)

GMRES tolerance
Iteration time

Fig. 4. (left) Relative nonlinear residual. (right) GMRES tolerance (bars) controlled by inexact
nonlinear method and time per nonlinear iteration (lines)

Fig. 5 shows the results of tests performed on a mini-cluster formed by 4 laptops and
a wireless/fast-ethernet network (2 Intel Centrino 1.6 GHz/512Mb, 1 Intel Centrino
1.3 GHz /512Mb and 1 Intel Pentium 4 2.4 GHz/512Mb interconnected by a Linksys

Wireless-B Hub, IEEE 802.11b/2.4GHz/11Mbps or Fast-Ethernet 10/100Mbps
network). These tests show the versatility and portability that message passing codes
can offer, making possible the solution of even large scale problems employing
modest machines.

3
9
8
.
6
6

5
2
3
.
0
2

2
3
1
4
.
9
1

3
9
8
.
6
6

1
7
8
.
6
9

1
5
4
.
5
2

0.00

250.00

500.00

750.00

1000.00

1250.00

1500.00

1750.00

2000.00

2250.00

2500.00

2750.00

3000.00

1 2 4

Number of Cluster Nodes
T

im
e

(s
ec

)

WIRELESS
FAST-ETHERNET

Fig. 5. (Left) Minicluster mobile wireless/fast-ethernet, (Right) Performance comparison
between wireless and fast-ethernet networks.

Fig. 5 (right) shows that the wireless technology employed (Wireless-B) was not
able to deliver the bandwidth required to reach a desirable speedup in this irregular
MPI parallel computation. However, with the increasing bandwidth in wireless
technology mobile-parallel computations will be a reality in the near future. The low
speedups achieved in the minicluster with fast-ethernet network were also due to the
small problem size, as occurred in the case shown in Fig. 3 (left) for SGI Altix.

5.2 Flow through a Los Angeles class submarine

This problem consists on a simplified three-dimensional simulation of a laminar flow
around a Los Angeles class submarine. The detailed solution and discussion of this
problem, involving transient and turbulent flow is given in [12]. Fig. 6 (left) shows
the mesh over the submarine hull. The volume mesh comprises 504,947 tetrahedral
elements, 998,420 edges and 92,564 nodes. The solution for this problem is shown in
Fig. 6 (right), where the pressure contour is plotted over the submarine hull and the
velocity in two longitudinal cutting planes. For this problem the linear tolerance
oscillated from the maximum value of 0.99 to a minimum of 2.7×10-2 and the
computations were carried out until a minimum relative residual of 10-10 was reached
after 21 nonlinear iterations.

Fig. 7 (left) shows some comparisons between the systems employed in our tests
with EDE data structure. We may see only slight differences between the systems. In
Fig. 7 (right) we compare the solution time spent to solve the problem with EBE and
EDE data structures. Note again that the EDE data structure running in one CPU was
faster than EBE employing four CPUs.

Fig. 6. (Left) Surface mesh, (Right) Typical solution - hull surface (pressure contour), cut
planes (velocity contour).

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1 2 4 8 16 32
Number of CPUs

T
im

e
(s

ec
on

d
s)

Cray XD1 (Opteron 1.8 GHz)

SGI ALTIX 3700 (Itanium-2 1.3 GHz)

SGI ALTIX 3700 (Itanium-2 1.5 GHz)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16 32

Number of CPUs

T
im

e
(s

ec
on

d
s)

Element
Simple edge

Fig. 7. (Left) Message passing performance in SGI Altix and Cray XD1 – edge-based data
structure, (Right) Data structure comparisons on SGI Altix (MPI).

6 Conclusions

We have tested the performance of a parallel edge-based inexact Newton solver for
fully coupled velocity-pressure nonlinear systems of equations arising from the
SUPG/PSPG finite element formulation of steady incompressible flow on
unstructured grids. We observed that the inexact nonlinear method employed has
shown good balance between accuracy and computational effort. The edge data
structure decreased the solution time even without employing any data reordering
method to exploit the cache. Our tests with benchmark problems have shown good
parallel performances, but interface mapping techniques could be used to reduce the
amount of data communication. The code is portable across different computer
platforms, ranging from a mobile wireless cluster to the SGI Altix 3700 and Cray
XD1 systems without any code modifications or CPU guided optimizations.

Acknowledgements

The authors would like to thank the financial support of the Petroleum National
Agency (ANP, Brazil) and the Center for Parallel Computations (NACAD) and the
Laboratory of Computational Methods in Engineering (LAMCE) at the Federal
University of Rio de Janeiro. The authors are very grateful for the computational
resources provided by Silicon Graphics Inc. (SGI/Brazil) and Cray Inc. We are also
indebted to Prof. M. Behr from RWTH Aachen University by the submarine mesh.

References

1. Dembo, R. S., Eisenstat, S. C. and Steihaug, T., Inexact Newton Methods, SIAM J.
Numer. Anal. (1982) 19: 400-408.

2. Eisenstat, S. C. and Walker, H. F., Choosing the Forcing Terms in Inexact Newton
Method, SIAM. J. Sci. Comput. (1996) 17–1: 16–32.

3. Ribeiro, F. L. B. and Coutinho, A. L. G. A., Comparison Between Element, Edge and
Compressed Storage Schemes for Iterative Solutions in Finite Element Analyses, Int. J.
Num. Meth. Engrg. 2005; 63-4:569-588.

4. Karypis G. and Kumar V., Metis 4.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. Technical report, Department of Computer Science, University of
Minnesota, Minneapolis, (1998) http://www.users.cs.umn.edu/~karypis/metis.

5. Tezduyar, T. E., Stabilized Finite Element Formulations for Incompressible Flow
Computations, Advances in Applied Mechanics (1991) 28: 1-44.

6. Tezduyar, T. E., Finite Elements in Fluids: Lecture Notes of the Short Course on Finite
Elements in Fluids, Computational Mechanics Division – Vol. 99-77, Japan Society of
Mechanical Engineers, Tokyo, Japan (1999).

7. Catabriga, L., Coutinho, A. L. G. A., Implicit SUPG solution of Euler equations using
edge-based data structures. Comput. Methods in Appl. Mech. and Engrg, 2002, 32(191):
3477-3490.

8. Coutinho, A. L. G. A., Martins, M. A. D., Alves, J. L. D., Landau, L., Moraes, A., Edge-
based finite element techniques for non-linear solid mechanics problems. Int. J. Num.
Meth. Engrg, 2001, 50(9):2053-2068.

9. Lohner, R., Edges, stars, superedges and chains, Comput. Methods in Appl. Mech. and
Engrg 1994, 111(3-4): 255-263.

10. Gustafson, J. L., Montry, G. R. and Benner, R. E., Development of Parallel Methods for a
1024-Processor Hypercube, SIAM J. on Sci. and Stat. Comp., 1988, 9(4):609-638

11. Soto, O., Löhner, R., Cebral, J. and Camelli, F., A Stabilized Edge-Based Implicit
Incompressible Flow Formulation, Comput. Methods Appl. Mech. Engrg. 2004, 193:2139-
2154.

12. http://manila.cats.rwth-aachen.de/developer/cases/la.0808, last visited in May 10, 2005.
13. Lo, D. C., Murugesan, K and Young, D. L., Numerical solution of three-dimensional

velocity-vorticity Navier-Stokes equations by finite difference method, Int. J. Numer.
Meth. Fluids 2005, 47:1469-1487.

14. Shu, C., Wang, L. and Chew Y T, Numerical computation of three-dimensional
incompressible Navier-Stokes equations in primitive variable form by DQ method, Int. J.
Numer. Meth. Fluids 2003; 43:345-368.

