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Abstract. The parallel edge-based solution of 3D incompressible Navier-Stokes 
equations is presented. The governing partial differential equations are 
discretized using the SUPG/PSPG stabilized finite element method [5] on 
unstructured grids. The resulting fully coupled nonlinear system of equations is 
solved by the inexact Newton-Krylov method [1]. Matrix-vector products 
within GMRES are computed edge-by-edge, diminishing flop counts and 
memory requirements. The non-linear solver parallel implementation is based in 
message passing interface (MPI). Performance tests on several computers, such 
as the SGI Altix, the Cray XD1 and a mini-wireless cluster were carried out in 
representative problems and results have shown that edge-based schemes 
require less CPU time and memory than element-based solutions. 

1   Introduction 

We consider the simulation of steady incompressible fluid flow governed by Navier-
Stokes equations using the stabilized finite element formulation in [5]. This 
formulation allows that equal-order-interpolation velocity-pressure elements are 
employed by introducing two stabilization terms: the Streamline Upwind Petrov-
Galerkin (SUPG) and the Pressure Stabilizing Petrov Galerkin stabilization (PSPG). 

When discretized, the incompressible Navier-Stokes equations give rise to a fully 
coupled velocity-pressure system of nonlinear equations due the presence of 
convective terms in momentum equation. The inexact Newton method [1] associated 
with a proper preconditioned iterative Krylov solver, such as GMRES, presents an 
appropriated framework to solve nonlinear systems, offering a trade-off between 
accuracy and the amount of computational effort spent per iteration.  

Inspired by finite volume methods, edge-based data structures have been 
introduced for explicit finite element computations of compressible flows on 
unstructured grids composed by triangles and tetrahedra. Soto et al [11] recently 
introduced an edge-based approach to solve incompressible flows with an uncoupled 
fractional step formulation. The advantages of edge-based schemes with respect to 
conventional element-based schemes are a major reduction in indirect addressing (i/a) 
operations and memory requirements. 



When dealing with large scale problems the use of parallel solvers is an essential 
condition and the use of an algorithm able to run efficiently in shared, distributed or 
hybrid memory systems has been a motivation for many researchers to turn the solver 
strategy more independent of the hardware resources. Therefore, the main goal of this 
work is the development of edge-based data structures for the SUPG/PSPG finite 
element formulation to solve steady incompressible fluid flows by a parallel inexact-
Newton method. 

The remainder of this work is outlined as follows: next section briefly describes the 
governing equations and finite element formulation. The third section presents some 
remarks on edge-based data structures for unstructured grids. The subsequent section 
treats the parallel implementation, results and final comments are summarized in the 
last sections. 

2 Governing Equations and SUPG/PSPG Finite Element 
Formulation 

Let sdnΩ ⊂  be the spatial domain, where nsd is the number of space dimensions. 
Let Γ  denote the boundary of Ω. We consider the following velocity-pressure 
formulation of the Navier-Stokes equations governing steady incompressible flows: 
 

( ) onρ ⋅ − − ⋅ Ωu u f∇ ∇ σ = 0,  (1)
on⋅ Ωu∇ = 0,   (2)

 
where ρ and u are the density and velocity, σ is the stress tensor. 

The essential and natural boundary conditions associated with equations (1) and (2) 
can be imposed at different portions of the boundary Γ and represented by, 
 

= σ =on ; ong hΓ ⋅ Γu g n h  (3)
 
where Γg and Γh are complementary subsets of  Γ. 

Let us assume following [5] that we have some suitably defined finite-dimensional 
trial solution and test function spaces for velocity and pressure, hSu , hVu , h

pS  and 
h h
p pV S= . The finite element formulation of equations (1) and (2) using SUPG and 

PSPG stabilizations for incompressible fluid flows can be written as follows: find  
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In the above equation nel is the number of elements in the mesh. The first four 
integrals on the left hand side represent terms that appear in the Galerkin formulation 
of the problem (1)-(3), while the remaining integral expressions represent the 
additional terms which arise in the stabilized finite element formulation. Note that the 
stabilization terms are evaluated as the sum of element-wise integral expressions. The 
first summation corresponds to the SUPG (Streamline Upwind Petrov/Galerkin) term 
and the second to the PSPG (Pressure Stabilization Petrov/Galerkin) term. The spatial 
discretization of equation (4) leads to a following system of nonlinear equations, 
 

( ) =F x 0  (5)
 
where  x = (u, p) is a vector of nodal variables comprising both nodal velocities and 
pressures and F(x) represents a nonlinear vector function. 

Newton’s method is attractive method to solve the system (5) because it converges 
rapidly from any sufficiently good initial guess [1]. However, one drawback of 
Newton’s method is the need to solve a locally linear system at each stage. 
Computing the exact solution can be expensive if the number of unknowns is large 
and may not be justified when xk is far from a solution. Thus, one might prefer to 
compute approximated linear solutions, leading to the following algorithm, 

 
ALGORITHM  IN 
for k = 0 step 1 until convergence do 
 Find some ηk ∈ [0,1) AND sk that satisfy 
  ||F(xk)+J(xk) sk|| ≤ ηk ||F(xk)|| (6)
  set xk+1 = xk + sk  

 
for some adaptively chosen ηk ∈ [0,1), where || • || is a norm of choice. The Jacobian, 
J(xk), is numerically approximated using Taylor’s expansions as described by 
Tezduyar [6]. This formulation naturally allows the use of an iterative solver like 
GMRES or BiCGSTAB: one first chooses ηk and then applies the iterative solver to 
(6) until a sk is determined for which the residual norm is satisfied. In this context ηk 
is called as a forcing term and can be specified in several different forms as described 
in [2]. 

3   Edge-Based data structures 

Edge-based data structures operate directly in the nodal graph of the underlying 
unstructured grid. It was shown in [3] that for unstructured grids edge-based data 
structures have more advantages than element-by-element (EBE) and compressed 
storage row (CSR) schemes. In the edge-based strategies, global coefficients are 
computed and stored in single DO-LOOPS making the evaluation of the left and hand 



sides faster and less memory demanding. We may derive an edge-based finite element 
framework by noticing that the element matrices can be disassembled into their 
contributions as shown in [7, 8]. For the set of all elements sharing a given edge, we 
may add their contributions, arriving to the edge matrix, which for the problem at 
hand is a non-symmetric 16 × 16 matrix. In Table 1 we compare the storage 
requirements to hold the coefficients of the element and edge matrices as well as the 
flop count and indirect addressing (i/a) operations to compute sparse matrix-vector 
products in the Krylov iterative driver element-by-element or edge-by-edge, that is, 
 

1

ne
l l

l=

= ∑Jp J p , (7)

 
where ne is the total number of local structures (edges or elements) in the mesh and pl 
is the restriction of p to the edge or element degrees-of-freedom. 

Table 1. Memory to hold the matrix coefficients and computational costs for element and edge-
based matrix-vector products for tetrahedral finite element meshes. 

 Memory Flop i/a 
Elements 1056 nnodes 2112 nnodes 1408 nnodes 

Edges 224 nnodes 448 nnodes 448 nnodes 

 
All data in this table is referred to nnodes, the number of nodes in the finite element 
mesh. According to [9], the following estimates are valid for unstructured 3D grids, 
nel ≈ 5.5×nnodes, nedges ≈ 7×nnodes, where nedges is the number of edges in the 
mesh. We may observe that data in Table 1 favors the edge-based scheme.  

4   Parallel Implementation 

The parallel inexact nonlinear solver presented in the previous section was 
implemented based in the message passing parallelism model (MPI). The original 
unstructured grid was partitioned into non-overlapped sub-domains by the use of the 
METIS_PartMeshDual routine provided by Metis package [4]. Afterwards, the 
partitioned data was reordered to avoid indirect memory addressing and IF clauses 
inside hot loops and MPI communications. Therefore, the equation numbers shared by 
the partitions were relocated to the last entries of the corresponding arrays.  

Most of the computational effort spent during the iterative solution of linear 
systems is due to evaluations of matrix-vector products or matvec for short. In our 
tests matvec operations achieved 92% of the total computational costs. In element-by-
element (EBE) and edge-by-edge (EDE) data structures this task is message passing 
parallelizable by performing matvec operations at each partition level, then 
assembling the contribution of the interface equations calling MPI_AllReduce routine 
over the last array entries. Finally, it is important to note that edge (and element) 
matrix coefficients are computed in single DO-LOOPS also in each partition. 



5   Results 

This section presents two benchmark problems to analyze the parallel solver 
performance. The numerical procedure considers a fully coupled u-p version of the 
stabilized formulation using linear tetrahedron elements. The parallel solver is 
composed by an outer inexact-Newton loop and an inner GMRES(25) with nodal 
block diagonal preconditioned linear solver.  

The computations were made on two SGI Altix 3700 systems (32/64 Intel Itanium-
2 CPUs with 1.3/1.5 GHz and 128/256 Gb of NUMA flex memory), and a Cray XD1 
system (32 AMD Opteron CPUs with 1.8 GHz). Some portability and mobile 
parallelism tests were performed on a mini-cluster fast-ethernet/wireless composed by 
4 laptop nodes with Intel Centrino processors and Microsoft Windows platform. The 
same code was compiled for three different systems (Intel Fortran 8.1 on SGI Linux 
systems, Portland Group Fortran on Cray Linux and Compaq Visual Fortran on mini-
cluster Intel/Windows). No CPU optimizations besides those provided by standard 
compiler flags (-O3) were made. 

5.1   Three dimensional leaky lid-driven cavity flow 

In this well known problem the fluid confined in a cubic cavity is driven by the 
motion of a leaky lid. Boundary conditions consist in a unit velocity specified along 
the entire top surface and zero velocity on the other surfaces. Table 2 shows the 
problem dimensions employed for all parallel performance tests, where in the label 
cav-nn, nn means the number of line divisions through the x, y, and z dimensions for 
mesh construction purposes. Fig. 1 (left) shows the streamlines for Reynolds 400 for 
the cav-101 mesh. We may note the main vortex formation and the singularities at the 
cavity corners, typical for this problem. Fig. 1 (right) show the computed vertical and 
horizontal velocities at the centerline, together with the recent numerical results of Lo 
et al [13] and Shu et al [14]. We may observe that all results are in good agreement. 

Table 2. Problem dimensions 

 Elements Edges Nodes Equations 
cav-31 148,955 187,488 32,768 117,367 
cav-51 663,255 819,468 140,608 525,556 
cav-71 1,789,555 2,193,048 373,248 1,421,776 

cav-101 5,151,505 6,273,918 1,061,208 4,101,106 
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Fig. 1. (left) Streamlines in a leaky lid-driven cubic cavity (right) Characteristic results for 
vertical and horizontal velocity at the centerline. 

In Fig. 2 (left) is shown the scaled speedup on the SGI Altix computed according to 
Gustafson’s law [10] and defined by Ss= n+(1-n) s, where n is the number of 
processors and s corresponds to the normalized time spent in the serial portion of the 
program. The scalability reached on SGI Altix for the models listed in Table 2 is 
shown in Fig. 2 (right). Note that when increasing the problem size the serial fraction 
s tends to shrink as more processors are employed. In our tests with SGI Altix 3700 
we have employed up to 32 Intel’s Itanium-2 processors and according to [10] the 
scaled speedup should be a linear function with moderate slope 1-n such as the line 
we have measured and shown in Fig. 2 (right). 
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Fig. 2. (left) Scaled speedup on SGI Altix for EDE data structure and cav101 model. (right) 

Scalability for the models considered.  

The scaled efficiency on SGI Altix for EDE data structure is presented in Fig. 3 (left). 
Good results may be observed for the cavity models, especially for those with larger 
number of degrees of freedom. In some cases efficiencies greater than 100% may be 
attributed to cache effects. The time spent when solving the cav-71 problem with EBE 
and EDE data structures is plotted in Fig. 3 (right). We may observe that the EDE 
solutions were faster than the EBE in all cases. Nevertheless, the CPU time ratios 



between EBE and EDE solutions are around 2.5 up to 16 processors. For 32 
processors this ratio decreases. This is an indication that as we refine the meshes, 
CPU time ratios between EBD and EDE has a tendency to remain around this value. 
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Fig. 3. (left) Scaled efficiency for EDE data structure on SGI Altix. (right) Wall time 
comparisons for EBE and EDE data structures for cav-71 mesh. 

The inexact nonlinear solver behavior is sketched in Fig. 4 through the decrease of 
relative residual (left), GMRES tolerance, and nonlinear iteration time (right). Note 
that at the beginning of the solution procedure the linear tolerance is large enough to 
allow very fast nonlinear iterations. When a sudden decay in the relative residual is 
detected, as may be seen in nonlinear iterations 14 to 24, the inexact nonlinear method 
identifies that the desired solution is imminent and the linear tolerance is tightened to 
entrap the final solution.  
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Fig. 4. (left) Relative nonlinear residual. (right) GMRES tolerance (bars) controlled by inexact 
nonlinear method and time per nonlinear iteration (lines) 

Fig. 5 shows the results of tests performed on a mini-cluster formed by 4 laptops and 
a wireless/fast-ethernet network (2 Intel Centrino 1.6 GHz/512Mb, 1 Intel Centrino 
1.3 GHz /512Mb and 1 Intel Pentium 4 2.4 GHz/512Mb interconnected by a Linksys 



Wireless-B Hub, IEEE 802.11b/2.4GHz/11Mbps or Fast-Ethernet 10/100Mbps 
network). These tests show the versatility and portability that message passing codes 
can offer, making possible the solution of even large scale problems employing 
modest machines. 
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Fig. 5. (Left) Minicluster mobile wireless/fast-ethernet, (Right) Performance comparison 
between wireless and fast-ethernet networks. 

Fig. 5 (right) shows that the wireless technology employed (Wireless-B) was not 
able to deliver the bandwidth required to reach a desirable speedup in this irregular 
MPI parallel computation. However, with the increasing bandwidth in wireless 
technology mobile-parallel computations will be a reality in the near future. The low 
speedups achieved in the minicluster with fast-ethernet network were also due to the 
small problem size, as occurred in the case shown in Fig. 3 (left) for SGI Altix.  

5.2 Flow through a Los Angeles class submarine 

This problem consists on a simplified three-dimensional simulation of a laminar flow 
around a Los Angeles class submarine. The detailed solution and discussion of this 
problem, involving transient and turbulent flow is given in [12]. Fig. 6 (left) shows 
the mesh over the submarine hull. The volume mesh comprises 504,947 tetrahedral 
elements, 998,420 edges and 92,564 nodes. The solution for this problem is shown in 
Fig. 6 (right), where the pressure contour is plotted over the submarine hull and the 
velocity in two longitudinal cutting planes. For this problem the linear tolerance 
oscillated from the maximum value of 0.99 to a minimum of 2.7×10-2 and the 
computations were carried out until a minimum relative residual of 10-10 was reached 
after 21 nonlinear iterations. 

Fig. 7 (left) shows some comparisons between the systems employed in our tests 
with EDE data structure. We may see only slight differences between the systems. In 
Fig. 7 (right) we compare the solution time spent to solve the problem with EBE and 
EDE data structures. Note again that the EDE data structure running in one CPU was 
faster than EBE employing four CPUs.  
 



 
Fig. 6. (Left) Surface mesh, (Right) Typical solution - hull surface (pressure contour), cut 
planes (velocity contour). 
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Fig. 7. (Left) Message passing performance in SGI Altix and Cray XD1 – edge-based data 
structure, (Right) Data structure comparisons on SGI Altix (MPI). 

6   Conclusions 

We have tested the performance of a parallel edge-based inexact Newton solver for 
fully coupled velocity-pressure nonlinear systems of equations arising from the 
SUPG/PSPG finite element formulation of steady incompressible flow on 
unstructured grids. We observed that the inexact nonlinear method employed has 
shown good balance between accuracy and computational effort. The edge data 
structure decreased the solution time even without employing any data reordering 
method to exploit the cache. Our tests with benchmark problems have shown good 
parallel performances, but interface mapping techniques could be used to reduce the 
amount of data communication. The code is portable across different computer 
platforms, ranging from a mobile wireless cluster to the SGI Altix 3700 and Cray 
XD1 systems without any code modifications or CPU guided optimizations. 
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