

Parallel Inexact Newton-Type Methods for the Solution of Steady Three Dimensional Incompressible Viscoplastic Flows with the SUPG/PSPG Finite Element Formulation

> R. N. Elias, A. L. G. A. Coutinho and M. A. D. Martins

> > COPPE/UFRJ Rio de Janeiro, RJ July de 2004

Introduction

- Objectives;
- Applications;
- Stabilized Finite Element Method;
- Fluid Rheology;
- Parallel issues;
- Results.

- Incompressible fluid flow;
- Newtonian and Non-Newtonian fluids
- Large scale problems;

Applications

- Oil and gas industry:
 - Flow of clay;
 - Salt domes formation;
 - Flow of drilling mud in borehole annulus. S

• Other industries:

- Injection and extrusion of polymers;
- Food flow;
- Pastes;
- Blood flow into arteries;
- Etc...

Main focus

(Viscous models)

SUPG/PSPG Finite Element Formulation

(variational form of *Navier-Stokes*)

$$\begin{split} \int_{\Omega} \mathbf{w}^{\mathrm{h}} \cdot \rho \left(\mathbf{u}^{\mathrm{h}} \cdot \nabla \mathbf{u}^{\mathrm{h}} - \mathbf{f} \right) d\Omega + \int_{\Omega} \varepsilon \left(\mathbf{w}^{\mathrm{h}} \right) : \sigma \left(p^{\mathrm{h}}, \mathbf{u}^{\mathrm{h}} \right) d\Omega - \int_{\Gamma} \mathbf{w}^{\mathrm{h}} \cdot h \, d\Gamma + \int_{\Omega} q^{\mathrm{h}} \nabla \cdot \mathbf{u}^{\mathrm{h}} d\Omega \\ &+ \sum_{e=1}^{nel} \int_{\Omega} \left(\tau_{\mathrm{SUPG}} \mathbf{u}^{\mathrm{h}} \cdot \nabla \mathbf{w}^{\mathrm{h}} \right) \cdot \left[\rho \left(\mathbf{u}^{\mathrm{h}} \cdot \nabla \mathbf{u}^{\mathrm{h}} - \mathbf{f} \right) - \nabla \cdot \sigma \left(p^{\mathrm{h}}, \mathbf{u}^{\mathrm{h}} \right) \right] d\Omega \\ &+ \sum_{e=1}^{nel} \int_{\Omega} \left(\frac{1}{\rho} \tau_{\mathrm{PSPG}} \nabla q^{\mathrm{h}} \right) \cdot \left[\rho \left(\mathbf{u}^{\mathrm{h}} \cdot \nabla \mathbf{u}^{\mathrm{h}} - \mathbf{f} \right) - \nabla \cdot \sigma \left(p^{\mathrm{h}}, \mathbf{u}^{\mathrm{h}} \right) \right] d\Omega = 0 \end{split}$$

SUPG = Streamline Upwind Petrov/Galerkin PSPG = Pressure Stabilizing Petrov/Galerkin

(T. E. TEZDUYAR, 1992)

SUPG/PSPG Formulation

(Matrix form)

$$\begin{bmatrix} \mathbf{N}(\mathbf{u}) + \mathbf{N}_{SUPG}(\mathbf{u}) + (\mathbf{K} + \mathbf{K}_{SUPG}) & -(\mathbf{G} + \mathbf{G}_{SUPG}) \\ \mathbf{G}^{T} + \mathbf{N}_{PSPG}(\mathbf{u}) + \mathbf{K}_{PSPG} & \mathbf{G}_{PSPG} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f} + \mathbf{f}_{SUPG} \\ \mathbf{e} + \mathbf{e}_{PSPG} \end{bmatrix}$$

Compact matrix form:

 $A(\mathbf{x})\mathbf{x} = \mathbf{b}$

Nonlinearity = Troubles!!! Solution \rightarrow non-linear methods. Newton, Picard, Broyden's, etc...

Rank problem solved with PSPG stabilization

Nonlinear Solution Procedures

Newton Method:

Considering the following non-linear problem:

 $N\!\left(d\right)\!\cong\!0$

Let (\mathbf{d}^*) be an approximation to the exact solution (\mathbf{d}) , such a that:

 $\boldsymbol{d}\cong\boldsymbol{d}^{*}+\Delta\boldsymbol{d}$

Performing *Taylor* series expansion: $\mathbf{N}(\mathbf{d}) \cong \mathbf{N}(\mathbf{d}^*) + \frac{\partial \mathbf{N}}{\partial \mathbf{d}}(\mathbf{d}^*) \Delta \mathbf{d} + \dots$

Substituting some terms:

 $\mathbf{K}_T =$ Jacobian matrix

 \mathbf{r} = nonlinear residual

Picard Method:

Consider the following linearized system:

 $\mathbf{N}(\mathbf{d}_i)\mathbf{d}_{i+1} \cong \mathbf{0}$

We have to solve:

 $\mathbf{N}(\mathbf{d}_i)\mathbf{d}^*\cong \mathbf{0}$

And update:

$$\mathbf{d}_{i+1} \cong \alpha \mathbf{d}^i + (1 - \alpha) \mathbf{d}^*$$

Where *α* is a relaxation or speedup parameter: 0 < α < 1

"Classic" Newton Method

(Iterative procedure)

(Some considerations)

• COMPUTATIONAL COST:

- Tangent matrix evaluation (*Jacobian*) at each nonlinear iteration;
- Locally linear system solution.

• STABILITY AND CONVERGENCE

- **NEWTON METHODS:**

Quadratic for good initial solutions (kick);

- **PICARD**:

Linear asymptotic.

Optimization Possibilities

Inexact Newton Method

Initial "kick": $\mathbf{d}^0 = \mathbf{0}$

➤ FOR i = 0 UNTIL CONVERGENCE DO:

Find $\eta^{i} \in [0,1)$ and $\Delta \mathbf{d}^{i}$ such that: $\left\| \mathbf{N} \left(\mathbf{d}^{i} \right) + \mathbf{K}_{T} \left(\mathbf{d}^{i} \right) \Delta \mathbf{d}^{i} \right\| \leq \eta^{i} \left\| \mathbf{N} \left(\mathbf{d}^{i} \right) \right\|$

Update:

$$\mathbf{d}^{i+1} = \mathbf{d}^i + \Delta \mathbf{d}^i$$

- END FOR

 $\eta_i \rightarrow$ Forcing function

Forcing Function (Linear tolerance)

(How to compute...)

Some possibilities:

1a.) Select any $\eta_0 \in [0,1)$ and choose:

$$\eta^{i+1} = \frac{\left\| \left\| \mathbf{N} \left(\mathbf{d}^{i+1} \right) \right\| - \left\| \mathbf{N} \left(\mathbf{d}^{i} \right) + \mathbf{K}_{T} \left(\mathbf{d}^{i} \right) \Delta \mathbf{d}^{i} \right\|}{\left\| \mathbf{N} \left(\mathbf{d}^{i} \right) \right\|}$$

2a.) For $\gamma \in [0,1)$ e $\alpha \in [1,2)$, select any $\eta_0 \in [0,1)$ and choose:

$$\eta^{i+1} = \gamma \left(\frac{\left\| \mathbf{N} \left(\mathbf{d}^{i+1} \right) \right\|}{\left\| \mathbf{N} \left(\mathbf{d}^{i} \right) \right\|} \right)^{\alpha} \quad \checkmark$$

Our choice:
$$\alpha = 2 e \gamma = 0.99$$

(S. C. EISENSTAT & H. F. WALKER, 1994) 15

Inexact Newton with backtracking

Newton x Picard

(Mixed method – A proposal...)

- **INEXACT NEWTON (IN)** = The Jacobian matrix is evaluated;
- **INEXACT PICARD (IP)** = The Jacobian is **NOT** evaluated;
- **Mixed method (***n*-**IP**+**IN**)= It is performed *n* Picard iterations, then the Newton method is turned on;

Computational Resources

 Cluster ITAUTEC Infoserver do NACAD-COPPE/UFRJ.
16 nodes Intel Dual Pentium III with 1Ghz, 512 Mb of memory and 256 Kb of cache, over Red Hat Linux platform;

Rotational eccentric annulus flow

Solution Procedures

CLUSTER INFOSERVER ITAUTEC

Parallel Issues: FEM with Message Passing

- Preprocessing:
 - Domain decomposition with METIS library;
 - Reodering partitions.
- Solution:
 - Data distribution with MPI (MPI_BCAST, MPI_SEND ande MPI_RECV);
 - Updates with MPI_ALLREDUCE.

Mesh preprocessing

Partitioned mesh by METIS library

NACAD

Nodal coordinates before reordering

1	0. 000E+00	0. 000E+00	0. 000E+00
2	1. 000E+01	0.000E+00	0.000E+00
3	2.000E+00	0. 000E+00	0. 000E+00
4	4. 000E+00	0. 000E+00	0. 000E+00
5	6. 000E+00	0. 000E+00	0.000E+00
6	8.000E+00	0. 000E+00	0. 000E+00
7	1. 000E+01	2.000E+00	0.000E+00
8	0. 000E+00	2.000E+00	0. 000E+00
9	8. 000E+00	2. 000E+00	0.000E+00
10	6.000E+00	2. 000E+00	0. 000E+00
11	4.000E+00	2.000E+00	0.000E+00
12	2.000E+00	2.000E+00	0.000E+00

Nodal coordinates after reordering

1	1.000E+01	0.000E+00	0.000E+00
2	8.000E+00	0. 000E+00	0. 000E+00
3	1. 000E+01	2.000E+00	0. 000E+00
4	8.000E+00	2.000E+00	0. 000E+00
5	6.000E+00	2.000E+00	0. 000E+00
6	0.000E+00	0.000E+00	0.000E+00
7	2.000E+00	0.000E+00	0.000E+00
8	4.000E+00	0.000E+00	0. 000E+00
9	0.000E+00	2.000E+00	0. 000E+00
10	2.000E+00	2.000E+00	0. 000E+00
11	6.000E+00	0.000E+00	0. 000E+00
12	4.000E+00	2.000E+00	0.000E+00

Partitioning data:

Avoiding memory loss:

Cluster Itautec: 16 nodes with 512 mb per node

Validation

Escoamento no interior de um duto circular

(Results)

25

Viscosity

Viscosity

Performance (Speedup)

Inexact Picard How it works...

Rotational eccentric anulus flow with Power Law (0.75) fluid

Results (3D parallel inexact-solver)

Power Law (0.75)

Axial Velocity

Results (3D parallel inexact-solver)

Streamlines

Viscosity

Results (3D parallel inexact-solver)

Power Law (1.25)

Non-Newtonian Fluid Flow

(Comparatives)

Rotational Eccentric Anulus flow (2D section)

Method comparatives IP, IN ou 5-IP+IN

Conclusions

- Parallel algorithms presented good performance;
- Parallel non-Newtonian flow simulations are suitable to predict large scale problems, such as, well drilling;
- Inexact Newton-type methods were faster than their classic versions;
- Implementation presented good agreement with Ansys/Flotran commercial software;
- Jacobian based in numeric derivatives presented inconstant perfomance;
- Among non-Newtonian fluids considered the Bingham plastic was the hardest of being computed;

