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Abstract

In this work we evaluate the performance of inexact Newton-type schemes to solve the nonlinear equations arising
from the SUPG/PSPG finite element formulation of steady viscoplastic incompressible fluid flows. The flow through an
abrupt contraction and the rotational flow in eccentric annulus with power law and Bingham rheologies are employed
as benchmarks. Our results have shown that inexact schemes are more efficient than traditional Newton-type strategies.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This work addresses aspects in the finite element simulation of steady viscoplastic flows with emphasis on
nonlinear solution strategies employing inexact Newton-type algorithms.

Several modern material and manufacturing processes involve non-Newtonian fluids, and in particular
viscoplastic fluids. Examples of non-Newtonian behavior can be found in processes for manufacturing
coated sheets, optical fibers, foods, drilling muds and plastic polymers. Numerical simulations of non-New-
tonian behavior represent a particular and difficult case of incompressible fluid flows. In these fluids the
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dependence between the viscosity and the shear rate amplifies the nonlinear character of the governing
equations. For a comprehensive presentation of numerical methods for non-Newtonian fluid flow compu-
tations we refer to [7,16].

The finite element computation of incompressible Newtonian flows involves two sources of potential
numerical instabilities associated with the Galerkin formulation of the problem. One source is due to the
presence of convective terms in the governing equations. The other source is due to the use of inappropriate
combinations of interpolation functions to represent the velocity and pressure fields. These instabilities are
frequently prevented by addition of stabilization terms into the Galerkin formulation. In the context of
non-Newtonian fluids, the rheological equations are inherently nonlinear, thus increasing the difficulties
to find an efficient solution method.

In this work we consider the stabilized finite element formulation proposed by Tezduyar [19] applied to
solve steady viscoplastic incompressible flows. This formulation, originally proposed for Newtonian fluids,
allows that equal-order-interpolation velocity–pressure elements are employed, circumventing the Bab-
uska–Brezzi stability condition by introducing two stabilization terms. The first term is the streamline up-
wind Petrov–Galerkin (SUPG) introduced by Brooks and Hughes [6] and the other one is the pressure
stabilizing Petrov Galerkin (PSPG) stabilization proposed initially by Hughes et al. [12] for Stokes flows
and generalized by Tezduyar et al. [21] to high Reynolds number flows.

It is known that, when discretized, the incompressible Navier–Stokes equations give rise to a system of
nonlinear algebraic equations due the presence of convective terms in the momentum equation. Among sev-
eral strategies to solve nonlinear problems the Newton�s methods is attractive because it converges rapidly
from any sufficiently good initial guess [8,13]. However, the implementation of Newton�s method requires
some considerations: Newton�s method requires the solution of linear systems at each stage and exact solu-
tions can be too expensive if the number of unknowns is large. In addition, the computational effort spent
to find exact solutions for the linearized systems may not be justified when the nonlinear iterates are far
from the solution. Therefore, it seems reasonable to use an iterative method [3], such as BiCGSTAB or
GMRES, to solve these linear systems only approximately.

The inexact-Newton methods associated with iterative Krylov solvers have been used to reduce compu-
tational efforts related to nonlinearities in many problems of computational fluid dynamics, offering a
trade-off between the accuracy and the amount of computational effort spent per iteration. According to
Kelley [13] its success depends on several factors, such as: quality of initial Newton step, robustness of Jaco-
bian evaluation and proper forcing function choice. Shadid and co-workers presented in [18] an inexact-
Newton method applied to problems involving Newtonian fluids, mass and energy transport, discretized
by SUPG/PSPG formulation and equal-order-interpolation elements. Recently, Knoll and Keyes [14] dis-
cussed the constituents of a broader class of inexact-Newton methods, the Jacobian-free Newton–Krylov
methods. In this work we address only the essentials of the inexact-Newton methods and the interested
reader should refer to Knoll and Keyes [14], and references therein, for a more detailed presentation.

Many authors have considered finite element formulations in combination with solution algorithms for
nonlinear problems arising from non-Newtonian incompressible flow simulations. For instance, in [5] the
least-squares method was employed; in [1] a mixed-Galerkin finite element formulation with a Newton–
Raphson iteration procedure coupled to an iterative solver was used, while in [17] the authors adopted
the Galerkin/least-squares formulation (GLS) associated also with Newton–Raphson algorithm; Meuric
et al. in [15] used the SUPG formulation in combination with Newton–Raphson and Picard iterations as
a strategy to circumvent computational difficulties in annuli flow computations. Some of these strategies
employ analytical or directional forms of Jacobians in the Newton method. The analytical derivative of
the stabilization terms are often difficult to evaluate. In this work we have tested the performance of the
approximate Jacobian form described by Tezduyar in [20]. This numerically approximated Jacobian is
based on Taylor�s expansions of the nonlinear terms and presents an alternative and simple way to imple-
ment the approximate tangent matrix employed by inexact Newton-type methods.
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The present paper is organized as follows. Sections 2 and 3 present the governing equations and the
SUPG/PSPG finite element formulation. Section 4 introduces the inexact Newton-type schemes under con-
sideration. The test problems are presented in Section 5 and the paper ends with a summary of our main
conclusions.
2. Governing and constitutive equations

Let X � Rnsd be the spatial domain, where nsd is the number of space dimensions. Let C denote the
boundary of X. We consider the following velocity–pressure formulation of the Navier–Stokes equations
governing steady incompressible flows:
qðu � $u� fÞ � $ � r ¼ 0 on X; ð1Þ
$ � u ¼ 0 on X; ð2Þ
where q and u are the density and velocity, r is the stress tensor given as
rðp; uÞ ¼ �pIþ T; ð3Þ
where p is the hydrostatic pressure, I is the identity tensor and T is the deviatoric stress tensor.
The essential and natural boundary conditions associated with Eqs. (1) and (2) can be imposed at dif-

ferent portions of the boundary C and represented by
u ¼ g on Cg; ð4Þ
n � r ¼ h on Ch; ð5Þ
where Cg and Ch are complementary subsets of C.
The relationship between the stress tensor and deformation rate for Newtonian fluids is defined by a pro-

portionality constant, that represents the momentum diffusion experienced by the fluid. Therefore, the devi-
atoric tensor in Eq. (3) can be expressed by
T ¼ 2leðuÞ; ð6Þ

where l is the proportionality constant known as the dynamic viscosity and e is the deformation rate tensor
or
eðuÞ ¼ 1

2
½$uþ ð$uÞT�. ð7Þ
The fluids that do not obey the relationship expressed in Eq. (6) are known as the non-Newtonian fluids.
The main characteristic of these fluids is the dependence of viscosity on other flow parameters, such as,
deformation rate and even the deformation history of the fluid. In these cases Eq. (6) can be rewritten as
T ¼ 2lð _cÞeðuÞ; ð8Þ

where _c is the second invariant of the strain rate tensor and lð _cÞ is the apparent viscosity of the fluid [7,16].

In this work the non-Newtonian flows considered are viscoplastic fluids described by power law and
Bingham models. The rheology models and non-Newtonian viscosity relations follow the definitions dis-
cussed in [2,7,11,16]; thus for the power law fluids we have
lð _cÞ ¼ l0K _cn�1 if _c > _c0;

l0K _cn�1
0 if _c 6 _c0;

(
ð9Þ
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where K denotes the consistency index, l0 is a nominal viscosity, n is the power law index and _c0 is the cutoff
value for _c. For Bingham fluids we use the bi-viscosity model expressed as
lð _cÞ ¼
l0 þ

rY

_c
if _c >

rY

lr � l0

;

lr if _c 6
rY

lr � l0

;

8><
>: ð10Þ
where lr is the Newtonian viscosity chosen to be at least an order of magnitude larger than l0. Typically lr

is approximately 100l0 to represent a true Bingham fluid behavior [2,4].
3. Finite element formulation

Let us assume following Tezduyar [19] that we have some suitably defined finite-dimensional trial solu-
tion and test function spaces for velocity and pressure, Sh

u, V h
u, Sh

p and V h
p ¼ Sh

p. The finite element formu-
lation of Eqs. (1) and (2) using SUPG and PSPG stabilizations for incompressible fluid flows [19] can be
written as follows: Find uh 2 Sh

u and ph 2 Sh
p such that 8wh 2 V h

u and 8qh 2 V h
p:
Z

X
wh � q uh � $uh � f

� �
dXþ

Z
X

eðwhÞ : rðph; uhÞdX�
Z

C
wh � hdCþ

Z
X

qh$ � uh dX

þ
Xnel

e¼1

Z
Xe

sSUPGuh � $wh � ½qðuh � $uhÞ � $ � rðph; uhÞ � qf�dX

þ
Xnel

e¼1

Z
Xe

1

q
sPSPG$qh � ½qðuh � $uhÞ � $ � rðph; uhÞ � qf�dX ¼ 0. ð11Þ
In the above equation the first four integrals on the left hand side represent terms that appear in the Galer-
kin formulation of the problem (1)–(5), while the remaining integral expressions represent the additional
terms which arise in the stabilized finite element formulation of the problem. Note that the stabilization
terms are evaluated as the sum of element-wise integral expressions. The first summation corresponds to
the streamline upwind Petrov/Galerkin (SUPG) term and the second correspond to the pressure stabiliza-
tion Petrov/Galerkin (PSPG) term. We have calculated the stabilization parameters according to [21], as
follows:
sSUPG ¼ sPSPG ¼
2kuhk

h#

� �2

þ 9
4m

ðh#Þ2

 !2
2
4

3
5
�1=2

. ð12Þ
Here uh is the local velocity vector, m represent the kinematic viscosity and the ‘‘element length’’ h# is de-
fined to be equal to the diameter of the circle which is area-equivalent to the element.

The spatial discretization of Eq. (11) leads to the following system of nonlinear equations:
NðuÞ þNdðuÞ þ Ku� ðGþGdÞp ¼ fu;

GTuþNuðuÞ þGup ¼ fp;
ð13Þ
where u is the vector of unknown nodal values of uh and p is the vector of unknown nodal values of ph. The
nonlinear vectors N(u), Nd(u), and Nu(u), the matrices K, G, Gd, and Gu emanate, respectively, from the
convective, viscous and pressure terms. The vectors fu and fp are due to the boundary conditions (4) and
(5). The subscripts d and u identify the SUPG and PSPG contributions respectively. In order to simplify
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the notation we denote by x = (u,p) a vector of nodal variables comprising both nodal velocities and pres-
sures. Thus, Eq. (13) can be written as
FðxÞ ¼ 0; ð14Þ

where F(x) represents a nonlinear vector function.

For Reynolds numbers much greater than unity and non-Newtonian behavior, the nonlinear character
of the equations becomes dominant, making the choice of the solution algorithm, especially with respect to
its convergence and efficiency a key issue. The search for a suitable nonlinear solution method is compli-
cated by the existence of several procedures and their variants. In the following section we present the non-
linear solution strategies based on the Newton-type methods evaluated in this work.
4. Nonlinear solution procedures

Consider the nonlinear problem arising from the discretization of the fluid flow equations described by
Eq. (14). We assume that F is continuously differentiable in Rnsd and denote its Jacobian matrix by J 2 Rnsd .
The Newton�s method is a classical algorithm for solving Eq. (14) and can be enunciated as: Given an initial
guess x0, we compute a sequence of steps sk and iterates xk as follows:
ALGORITHM N

for k ¼ 0 step 1 until convergence do

solve JðxkÞsk ¼ �FðxkÞ
set xkþ1 ¼ xk þ sk

ð15Þ
Newton�s method is attractive because it converges rapidly from any sufficiently good initial guess (see
[8]). However, one drawback of Newton�s method is the need to solve the Newton Eqs. (15) at each stage.
Computing the exact solution using a direct method can be expensive if the number of unknowns is large
and may not be justified when xk is far from a solution. Thus, one might prefer to compute some approx-
imate solution, leading to the following algorithm:
ALGORITHM IN

for k ¼ 0 step 1 until convergence do

find some gk 2 ½0; 1Þ AND sk that satisfy

kFðxkÞ þ JðxkÞskk 6 gkkFðxkÞk
set xkþ1 ¼ xk þ sk

ð16Þ
for some gk 2 [0, 1), where k Æ k is a norm of choice. This formulation naturally allows the use of an iterative
solver: one first chooses gk and then applies the iterative solver to (15) until a sk is determined for which the
residual norm satisfies (16). In this context gk is often called the forcing term, since its role is to force the
residual of Eq. (15) to be suitably small. This term can be specified in several ways (see [9]) to enhance effi-
ciency and convergence and will be treated in Section 4.1. Note that, as demonstrated in Kelley [13], con-
vergence is superlinear. In our implementation, following [22] we have used an element-by-element (EBE)
BiCGSTAB method to compute sk such that Eq. (16) holds.

A particularly simple scheme for solving the nonlinear system of Eqs. (14) is a fixed point iteration
procedure known as the successive substitution, also known as the Picard iteration, functional iteration
or successive iteration. In the non-Newtonian cases considered here we follow Meuric et al. [15]. Material
nonlinearities are treated by using values from the previous iteration level (upstream values) as in case of
successive or Picard iterations. The apparent non-Newtonian viscosities are evaluated after each iteration
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using the new velocity solution vector. Computational difficulties can be encountered when the apparent
viscosities attains infinite values. This happens in the case of the power law approximation that is breaking
down at extreme values of shear rate.

4.1. Forcing term

We have implemented the forcing term as a variation of the choice from Eisenstat and Walker [9] that
tends to minimize oversolving while giving fast asymptotic convergence to a solution of (14). Oversolving
means that the linear equation for the Newton step is solved to a precision far beyond what is needed to
correct the nonlinear iteration. Kelley [13] have considered the following measure of the degree to which
the nonlinear iteration approximates the solution
ga
k ¼ ckFðxkÞk2

=kFðxk�1Þk2
; ð17Þ
where c 2 [0, 1) is a parameter. In order to specify the choice at k = 0 and bound the sequence away from 1
we set,
gb
k ¼

gmax k ¼ 0;

minðgmax; g
a
kÞ k > 0;

�
ð18Þ
where the parameter gmax is an upper limit of the sequence {gk}. We have chosen c = 0.9 according to
Eisenstat and Walker [9], and adopted gmax = 0.1 arbitrarily in our tests.

It may happen that gb
k is small for one or more iterations while xk is still far from the solution. A method

of safeguarding against this possibility was suggested by Eisenstat and Walker [9] to avoid volatile de-
creases in gk. The idea is that if gk�1 is sufficiently large we do not let gk decrease by much more than a
factor of gk�1, that is
gc
k ¼

gmax k ¼ 0;

min gmax; g
a
k

� �
k > 0; cg2

k�1 < 0.1;

min gmax;max ga
k ; cg

2
k�1

� �� �
k > 0; cg2

k�1 > 0.1.

8><
>: ð19Þ
The constant 0.1 is arbitrary. According to Kelley [13] the described safeguarding does improve the perfor-
mance of the iteration.

There is a chance that the final iterate will reduce kFk far beyond the desired level and that the cost of the
solution of the linear equation for the last step will be higher than is really needed. This oversolving in the
final step can be controlled by comparing the norm of the current nonlinear residual to the nonlinear norm
at which the iteration would terminate
sNL ¼ sreskF0k ð20Þ

and bounding gk by a constant multiple of sNL/kF(xk)k. We use the choice proposed by Kelley [13], that is
gk ¼ min gmax;max gc
k; 0.5sNL=kFðxkÞk

� �� �
; ð21Þ
where sNL represent the nonlinear tolerance.

4.2. Jacobian matrix evaluation

To form the Jacobian J required by Newton-type methods we use a numerical approximation described
by Tezduyar [20]. Consider the following Taylor expansion for the nonlinear convective term emanating
from the Galerkin formulation:
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Nðuþ DuÞ ¼ NðuÞ þ oN

ou
Duþ � � � ; ð22Þ
where Du is the velocity increment. Discarding the high order terms and omitting the integral symbols we
arrive at the following approximation:
w � qðuþ DuÞ � $ðuþ DuÞ ffi w � qðu � $Þuþ w � qðu � $ÞDuþ w � qðDu � $Þu
¼ NðuÞ þ CðuÞ þ CþðuÞ. ð23Þ
Note that the second term in the right hand side of Eq. (23) is the contribution to the nonlinear Galerkin
convective matrix C(u) and the remaining matrix completes the numerical approximation of oN/ou. If we
apply similar derivations to Nd(u) and Nu(u) we obtain
sSUPG½ðuþ DuÞ � $�w � q½ðuþ DuÞ � $�ðuþ DuÞ
ffi sSUPGðu � $Þw � qðu � $Þuþ sSUPGðu � $Þw � qðu � $ÞDuþ sSUPGðu � $Þw � qðDu � $Þu
þ sSUPGðDu � $Þw � qðu � $Þu

¼ NdðuÞ þ C
ð
duÞ þ Cþd ðuÞ þ Cþþd ðuÞ ð24Þ
and
sPSPG$q � ½ðuþ DuÞ � $�ðuþ DuÞ ffi sPSPG$q � ðu � $Þuþ sPSPG$q � ðu � $ÞDuþ sPSPG$q � ðDu � $Þu
¼ NuðuÞ þ CuðuÞ þ Cþu ðuÞ; ð25Þ
where again the second terms on the right hand side of Eqs. (24) and (25) are the SUPG and PSPG con-
tributions to the convective matrix and the additional terms also complete the definition of the numerical
approximations of oNd/ou and oNu/ou. Note that if we do not build the full approximate Jacobian matrix
and the solution of previous iterations is used to compute the matrices C, CSUPG and CPSPG, we obtain a
successive substitution (SS) method. In this work, we have evaluated the efficiency of Newton and succes-
sive substitution methods and their inexact versions. We may also define a mixed strategy combining SS
and N (or ISS and IN) iterations, to improve performance, as discussed in the following. In this strategy
the Jacobian evaluation is enabled after k successive substitution iterations. Thus, we label the mixed strat-
egy as k-SS + N or as k-ISS + IN in the case of its inexact counterpart.
5. Numerical results

In this section we present two examples of practical applications of the nonlinear methods described in
the previous sections. The first problem consists of a flow through an abrupt contraction well known in
food processing and plastic molding industries. The second is the rotational eccentric annulus flow into
borehole wells observed during well drilling operations. Table 1 shows the fluid parameters for the two test
problems. In all the numerical experiments no special care was taken with the initial conditions and we have
adopted zero value as initialization for pressure and velocity fields. The nonlinear iterations were halted
when the maximum and the relative residual Euclidean norms decreased 10 orders of magnitude. In the
mixed strategy solutions we switched to the approximate Jacobian updates after five successive substitu-
tions or inexact successive substitutions. An engineering criterion was adopted to define the exact nonlinear
solution methods. In these, the inner linear equation systems were solved by BiCGSTAB with a fixed tol-
erance of 10�6. All computations have been performed on the InfoServer Itautec PC Cluster (16 nodes dual
Intel Pentium 1 GHz, Intel Fortran compiler and Red Hat Linux) located at the Center for Parallel Com-
putations at COPPE/UFRJ.



Table 1
Fluid properties

Fluid model Rheology parameters Flow through an
abrupt contraction

Rotational eccentric
annulus flow

Newtonian Viscosity (kg/m s) 10�2 10�2

Pseudoplastic (n = 0.75) Nominal viscosity (kg/m s) 10�2 0.15
Cutoff shear rate (Pa) 10�6 10�6

Consistency index (Pa sn) 1.0 1.0

Dilatant (n = 1.25) Nominal viscosity (kg/m s) 10�2 0.15
Cutoff shear rate (Pa) 10�6 10�6

Consistency index (Pa sn) 1.0 1.0

Bingham Plastic viscosity (kg/m s) 10�2 0.15
Yield stress (Pa) 10�1 7.16

Density = 1.0 kg/m3.
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5.1. Flow through an abrupt contraction

An important problem in rheology is the prediction of entry losses when a viscous fluid flows through a
contraction at the junction of two tubes of different diameters, and of the exit losses when the fluid leaves
the tube and enters a jet. The problem is important in rheometry as well as in technological applications,
where contractions are present in most forming devices [7,16].

Fig. 1 shows the geometry of the problem and the boundary conditions and Fig. 2 shows the finite ele-
ment mesh. We consider an axisymmetric 4:1 contraction, where 4 and 1 are the ratio between the radius of
the upstream and downstream tubes, respectively. The boundary ABCD is a fixed and impenetrable wall on
which the velocity components of the fluid are assumed zero, while EF is an axis of symmetry. The velocity
F E

A B

C D

Fig. 1. Geometry and boundary conditions for the contraction 4:1 problem.

Fig. 2. Finite element mesh 3600 element mesh and 1911 nodes.
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profile adopted as upstream boundary condition may be found in Bose and Carey [5]. The mesh shown in
Fig. 2 was built with 3600 triangular elements and 1911 nodes.

Fig. 3a–d (left) present the velocity contour results for the fluid rheologies in Table 1. Fig. 3b–d (right)
show the viscosity contour for each fluid rheology. For the pseudoplastic fluid (Fig. 3b) the shear-thinning
behavior is observed near to the corner entrance, where the viscosity tends to decrease with the presence of
high velocity gradients. The opposite behavior is noted in dilatant fluids. This fluid tends to become less
viscous with increase of the shear rate. In the Bingham case, we can note the regions where the fluid displays
high viscosity and flows slowly. In Fig. 4a–d we may observe the good agreement between our inexact-New-
ton results and those obtained by Ansys Flotran [2].

Fig. 5a–d show the relative residual norm convergence towards the nonlinear solution for each fluid
type. We note that the solutions for the Newtonian, pseudoplastic and dilatant fluids show a similar trend.
The inexact successive substitution (ISS) solutions converge very slowly for these fluids, needing more than
Fig. 3. Flow through an abrupt contraction—velocity and viscosity contours. (a) Newtonian fluid, (left) velocity field, (right) pressure
field; (b) pseudoplastic fluid, (left) velocity field, (right) viscosity field; (c) dilatant fluid, (left) velocity field, (right) viscosity field and (d)
Bingham fluid, (left) velocity filed, (right) viscosity field.



(a)

(b)

(c)

(d)

Fig. 4. Velocity profiles validation for the flow through an abrupt contraction. (a) Newtonian fluid, (b) pseudoplastic fluid (n = 0.75),
(c) dilatant fluid (n = 1.25) and (d) Bingham fluid.

3154 R.N. Elias et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 3145–3167
100 iterations to reach the desired accuracy. The inexact Newton-type solutions (IN and 5-ISS + IN), on
the contrary, solved these problems with a good convergence rate, although requiring slightly more nonlin-
ear iterations than their counterparts (N and 5-SS + N). These results indicate that the numerically approx-
imated Jacobians improve the convergence rate of the nonlinear solution. However, as shown in Fig. 5d, for
the Bingham fluid the numerically approximated Jacobian has no effect on convergence.

Fig. 6 shows, for each fluid, the total number of nonlinear iterations for each solution method. We can
observe that the numerically approximated Jacobians have more influence in the inexact methods. Note
also that when we start to evaluate the Jacobians after a few inexact successive substitutions the number
of nonlinear iterations decreases to an amount comparable to the IN solution. As can be seen in Fig. 7,
the inexact methods are very fast, since they require less effort to compute the solution updates, as shown
in Fig. 8, which depicts, for all fluids, the total number of BiCGSTAB iterations for each method.



(a)

(b)

Fig. 5. Flow through an abrupt contraction influence of numerical Jacobian evaluation in the Newton-type methods. (a) Newtonian
fluid, (b) pseudoplastic fluid (n = 0.75), (c) dilatant fluid (n = 1.25) and (d) Bingham fluid.
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5.2. Rotational eccentric annulus flow

This problem is based on the fluid dynamics observed in the flow of drilling muds in a borehole during
well drilling operations. In these operations, the mud is pumped through the hollow drill shaft to the drill
bit where it enters the wellbore and returns under pressure as a rotational flow to the well surface. The pri-
mary functions of the mud are to carry rock cuttings to the surface, to lubricate the drill bit and to control
subsurface pressures. The rheology of muds usually exhibits a finite yield stress and shear-thinning behavior
[15].



(c)

(d)

Fig. 5 (continued)
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In this problem the drilling mud flow has a tendency to form a helical stream surrounding the drill string
due the existence of radial and tangential forces. The radial force is generated by the pressure drop imposed
by the mud pump and the tangential force is due to the rotational movement of the drill string. The trans-
port of these rotational forces through the fluid layers is significantly influenced by the fluid viscosity.

Extensive numerical investigations of annuli flow were conducted by Escudier et al. [10]. The effects of
eccentricity and inner-cylinder rotation on the flow of several power law fluids were studied. We restrict
ourselves here to a simple case, the laminar tangential flow in an eccentric annulus for Newtonian, power
law and Bingham fluids, in a 2D section of a borehole given in Fig. 9. The eccentricity is 0.6 and the finite



Fig. 7. Nonlinear algorithms performance—CPU time (s) by method.

Fig. 6. Nonlinear algorithms performance—number of nonlinear iterations by method.

R.N. Elias et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 3145–3167 3157



Fig. 8. Nonlinear algorithms performance—number of BiCGSTAB iterations by method.

Fig. 9. 2D cross section scheme of a borehole well showing the drill string at center and rotation direction.
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element mesh in Fig. 10 comprises 1600 elements and 800 nodes. The rotational speed imposed at the drill
string is 300 RPM for all cases, while the borehole wall is considered impenetrable.



X

Y Z

Fig. 10. Finite element mesh: 1600 elements and 800 nodes.
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Fig. 11a–d (left) present the velocity contour for the several fluids considered in this study. Fig. 11b–d
(right) show the viscosity contour for each fluid. In Fig. 12a–d we plot the velocity profiles along the dashed
line in the annulus for all fluids. We may observe that our inexact Newton solutions are in good agreement
with solutions obtained by using Ansys Flotran [2].

Fig. 13a–d show the relative residual evolution towards the nonlinear solution for each fluid type. For
the Newtonian and power law fluids we note that the Newton strategies converge faster than the successive
substitutions or mixed methods, indicating that in these experiments the numerically approximated Jaco-
bians also improved convergence rate. In particular, for the Newtonian case convergence is very fast.
We observe that the convergence rate of the inexact Newton method and the inexact mixed method is
superlinear only for the Newtonian fluid.

For the Bingham fluid (see Fig. 13d) we observe that convergence is slower than for the power law fluids.
It is also important to note that only the inexact methods were able to reach the desired accuracy. In all
other methods the relative residual norm oscillates wildly, indicating serious convergence problems. The
inexact Newton method required the smallest number of iterations, which is a clear sign that the numeri-
cally approximated Jacobians have even in this case substantially increased the convergence rate.

In Figs. 14–16 we show respectively the total number of nonlinear iterations, the total CPU time in sec-
onds, and the total number of inner (BiCGSTAB) iterations for each fluid and nonlinear strategy. We may
see in these figures that although the inexact methods require more nonlinear iterations, they need less inner
(BiCGSTAB) iterations. Consequently, as shown in Fig. 14, the inexact methods are faster. However, it is
interesting to note that only in the case of the dilatant fluid the inexact successive substitution method is the
fastest. For Bingham and pseudoplastic fluids the inexact Newton method is faster than all other strategies.
In the case of a Newtonian fluid, we observed that the inexact mixed method (5-ISS + IN) is the fastest.
6. Conclusions

We have tested the performance of inexact Newton-type algorithms to solve nonlinear systems of equa-
tions arising from the SUPG/PSPG finite element formulation of steady incompressible viscoplastic flows.



Fig. 11. Rotational eccentric annulus flow—velocity and viscosity contours. (a) Newtonian fluid, (left) velocity field, (right) pressure
field; (b) pseudoplastic fluid, (left) velocity field, (right) viscosity field; (c) dilatant fluid, (left) velocity field, (right) viscosity field and (d)
Bingham fluid, (left) velocity field, (right) viscosity field.
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(a)

(b)

Fig. 12. Velocity profile validation for the rotational eccentric annulus flow. (a) Newtonian fluid, (b) pseudoplastic fluid (n = 0.75), (c)
dilatant fluid (n = 1.25) and (d) Bingham fluid.
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We employed a numerically approximated Jacobian based on Taylor�s expansion of the nonlinear convec-
tive terms emanating from the Galerkin and stabilization terms. We also introduced an inexact successive



(c)

(d)

Fig. 12 (continued)
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substitution scheme and a mixed strategy to improve performance of Newton�s method. Extensive tests in
two 2D benchmark problems considering Newtonian, power law and Bingham fluids have shown that the
inexact Newton method or the inexact mixed method, both with numerically approximated Jacobians are



(a)

(b)

Fig. 13. Rotational eccentric annulus flow—influence of numerical Jacobian evaluation in the Newton-type methods. (a) Newtonian
fluid, (b) pseudoplastic fluid (n = 0.75), (c) dilatant fluid (n = 1.25) and (d) Bingham fluid.
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faster than the classical methods also using the same approximate form for the tangent operator. However,
in all Bingham fluid test cases the numerically approximated Jacobian has little effect. Further experiments
are needed to investigate other important issues, such the effects of globalization procedures, more robust



(c)

(d)

Fig. 13 (continued)
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preconditioners and other Jacobian forms. Of particular interest here is the development of numerically
approximated Jacobian terms for the viscous terms, to accelerate convergence especially for Bingham
fluids.



Fig. 14. Nonlinear algorithms performance—CPU time (s) by method.

Fig. 15. Nonlinear algorithms performance—number of nonlinear iterations by method.
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Fig. 16. Nonlinear algorithms performance—Number of BiCGSTAB iterations by method.
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