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Abstract. The high operational costs of the oil industry increased the need of numerical 
simulation. Modern simulators allow phenomena such as thermal effects, mechanics and fluid 
flow to be treated contributing to reduce exploitation risks. The improvement of 
computational resources as hardware and software has been responsible for complex and 
large scale simulations of three-dimensional sedimentary basin models in regional scale, 
allowing the analysis over the history of a sedimentary basin formation, from its sediments 
deposition up to generation, expulsion, migration, trapping and conservation of 
hydrocarbons. Geological faults can play an important role in producing migration paths and 
can be simulated by interface finite elements. In this work, the effects of mechanical 
simulation of stress of geological fractured media by zero-thickness interface elements 
(considering small displacements) are coupled to fluid flow in faults modeled by three-
dimensional hydraulic interface elements based on the two-dimensional element developed by 
Segura et al. Besides the coupling through the storage equation, the fault aperture from 
mechanical analysis feeds the hydraulic system establishing potentially paths for oil 
migration. 
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1. INTRODUCTION 
 
 In a geomechanical sense, a discrete fracture represents a discontinuity that can occur in 
either homogeneous or heterogeneous geologic media (Selvadurai and Yu, 2005) with 
extensions that can reach the order of microfissures or thousands of kilometers 
(http://fracflow.dk). The presence of fracture in the upper brittle crust is due to instabilities 
from the lower ductile layers. These instabilities, characterized as either uplifts or subsidence 
phenomena, arise from a variety of geologic phenomena such as relative lithostatic 
movements, thermal gradients and fluid pressure (Tuncay and Ortoleva, 2002). 
 The effect of the fractures over the hydromechanical behavior plays an important role on 
understanding such processes like oil recovering, hydrogeology, pollutant dispersion and 
geotechnical applications in general. The concern on understanding of such coupled 
phenomena has been growing significantly in the last decade (Wan, 2002). 
 The relative displacements between fracture walls usually generates an aperture which 
can be understood as either a preferential path for fluid flow or not, according to the existence 
of a void or not. Thus, the aperture can be filled with material (coming out from wall friction 
or transported by fluid flow) and consequently presenting higher or lower permeability 
relative to the surrounding porous media, characterizing the formation of a joint 
(http://fracflow.dk; Selvadurai and Yu, 2005). The fracture existence as a void or filled with 
some material, which can have significant difference in either hydraulic or mechanical 
material properties from surrounding media, has a great impact over the original 
hydromechanical behavior of the formation. 
 In this work we study the discrete modeling of well characterized fractures in 
geomechanical scenarios by the finite element method. This study comprises the coupled 
hydromechanical behavior simulation of fractured porous media (Wan, 2002). The 
mechanical modeling is carried out by trilinear tetrahedral elements for the domain, whereas 
faults are represented by discrete joints as three-dimensional six-noded prismatic interface 
elements (Coutinho et al., 2003). The fault material presents elastoplastic behavior according 
to the Mohr-Coulomb theory (Crisfield, 1996). We consider small displacements only. The 
hydraulic phenomenon studied comprises one-phase fluid flow according to Darcy’s law. In 
the hydraulic modeling, the domain is discretized by trilinear tetrahedral elements and three-
dimensional prismatic six-noded interface elements, expanded from two-dimensional ones as 
proposed by Segura and Carol (2004), for saturated porous media, thus keeping the same 
mesh topology for both mechanical and hydraulic analyses. The main target is to build a 
coupling procedure between hydraulic and mechanical analyses through fractures, hence 
porosity changes and gravitational effects are neglected. 
 The hydromechanical coupling is accomplished by the storage equation (Verruijt, 2001) 
and fault apertures, considering steady state fluid behavior. The fault permeability is assumed 
constant and flow within the fault is laminar. As a great advantage, the same interface element 
topology for both mechanical and hydraulic modeling allows direct field interchange with no 
need of extra manipulations. 
 The code implemented was based on the high performance computing paradigm of 
shared memory processing and uses the data locality optimization concept through special 
data-reordering algorithms for finite element data (Ribeiro and Coutinho, 2005). We employ 
here the edge-based inexact-Newton method introduced by Coutinho et al. (2001) for solving 
the resulting set of coupled non-linear equations. 
 This work is organized as follows: section 1 presents the equations underlying the 
phenomena; in section 2, the governing equations are presented; section 3 establishes the 
methodology used to implement the coupling procedure; in section 4, we treat three examples 
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comprising different scenarios for different hydraulic boundary conditions and finally, section 
5 presents the main conclusions and future work. 
 
2. GOVERNING EQUATIONS 
 
 The proposed approach is based on the following governing equations of a quasi-static 
deformation and fluid flow in saturated porous matrix for a domain  Ω as, 
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Equations (1) and (2) are the momentum and mass balance for solid and fluid phases 

respectively; σij is the Cauchy stress tensor, xj is the position vector, ρ is the weight per unit 
volume, bi represents body forces and qj is the fluid flux. Equation (1) is subjected to the 
kinematic, traction and flux boundary conditions: 
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where Γu represents the portion of the boundary where displacements are prescribed (

î
u ) and 

Γh represents the portion of the boundary where tractions are specified (hi); for hydraulic 
counterpart, Γp and ΓQ are the portions of the boundary where hydraulic pressures ( p ) and 
fluxes (Qj) are applied respectively; t represents an increment parameter only. The boundary Γ 
of the body is given by Γs = Γu ∪ Γh and Γf = Γp ∪ ΓQ for solid and fluid boundary conditions 
respectively, with Γ ≡ Γs ≡ Γf. 

Equations (2) and (4) are explicitly coupled through total stress relation given by 
(Verruijt, 2001) 
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where e

ijσ  is the effective stress field over the entire solid porous matrix and δij is Kronecker 
delta. The hydraulic pressure fluctuation due to sources, sinks and relative to initial pressure 
state, induces the correspondent volumetric deformation of solid phase, acting uniformly over 
the porous matrix and is evaluated as (Verruijt, 2001) 
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where 1/ks is the rock compressibility, assumed constant for small displacements and is 
defined as (Lambe, 1979) 
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where E is the Young Modulus and α is the Biot constant. 
The constitutive equation that links effective stresses to solid phase deformations is 

independent from pore-pressure field. Despite other effects, one can write the incremental 
relation between stress and strain as (Crisfield, 1996) 
 

( )pkkijijkl
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where dεij is the total deformation of solid phase. 
 
3. FINITE ELEMENT APPROACH 
 

The finite element discretization of Eq. (1) and (4) generates the discrete equilibrium 
equation given by 
 

Fi – Fe = 0 (9) 
 
where Fi and Fe are the internal and external forces vector respectively. By considering the 
discretization of Eq. (1) and (3) along with incremental loading and the non-linear behavior of 
faults configurations of closing, sliding and opening, the linearization of these equations 
produces the set of non-linear equations to be solved incrementally by a Newton-like 
algorithm as 
 

KT ∆u = Fi – Fe = R (10)
 
where the tangent stiffness matrix KT contains the contributions of both the solid elements and 
the kinematically consistent interface elements (Coutinho et al., 2003); ∆u is the displacement 
field and R is the residual vector. Internal forces are evaluated considering the elastoplastic 
behavior of the faults and the elastic domain behavior, and external forces are evaluated as 
follows 
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where N is the shape function vector and BT is the discrete divergent operator; the domain is 
split into two subdomains composed by the porous matrix and faults, that is Ω = Ωp ∪ Ωf. The 
first and second term of right hand side of Eq. (11) evaluate the dragging force and the 
hydrostatic deformation respectively, over the solid phase (porous matrix and fractures) due to 
pore-pressure field oscillations. 

Diffusion effects through faults are dependent of aperture configurations and are 
evaluated according to Eq. (2) and (4) with constant permeability and apertures input from 
mechanical analysis. The coupling procedure implemented is depicted in Fig. 1. 
 The resulting set of coupled non-linear equations is solved by an edge-based inexact-
Newton algorithm combined with the Preconditioned Conjugate Gradient (PCG) algorithm 
for solving the series of linearized system of equations. The preconditioner is diagonal and 
block-diagonal for the hydraulic and mechanical solvers respectively. For the inexact-Newton 
algorithm, the tolerances vary in a closed interval ranging between 10-6 and 10-3 for the 
mechanical solution. For the hydraulic solution, the tolerance is fixed to 10-6. 
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Figure 1 – Coupling procedure for hydromechanical analysis in fractured porous media for 

steady-state behavior. 
 
4. EXAMPLES AND RESULTS 
 

The example presented is composed by a domain cut out by a fault, with dimensions of 6 
by 6 length units and unitary thickness. The mechanical boundary conditions comprise normal 
displacements prescribed null in all planes unless the upper plane (where all displacements are 
free) and hydraulic pressure applied incrementally. The objective is to study the interaction 
between the fault configuration and the pressure and displacement field history according to 
the loading increment regime. In order to simplify, all results comprised the solid phase 
configuration after equilibrium of Eq. (10) for the first pressure field only. 

Figure 2 presents the domain dimensions, mechanical boundary conditions and material, 
where kx, ky and kz is the permeability for each direction; at fault, φ is the internal friction 
angle, c is the cohesion and Ks, Kt and Kn is the stiffness coefficient related to local directions 
– s and t as tangential and n as normal to interface element mid plane. The Biot coefficient is 
assumed to be the same for the domain and the fault. 

The domain was discretized into 225,114 four-noded tetrahedral and 1,200 six-noded 
interface elements, generating 42,458 nodes. All runs were carried out in a Pentium IV, 2.66 
GHz and RAM 512 MB. 
 

 

 
Material Properties for Domain: 
 

E = 5×108 [F/L2] 
ν = 0.29 
α = 0.85 
kx = ky = kz = 10-5 [L/T] 
 

Material Properties for Fault: 
 

Ks = Kt = Kn = 108 [F/L3] 
φ = 30o 
c = 106 
kx = ky = 10-3 [L/T] 
kz = 10-3 [1/T] 

Figure 2 – Domain dimensions, mechanic boundary conditions and materials. 
 
 The analysis was divided into 3 cases according to hydraulic boundary condition for 
pressure. The objective is to observe the response of fault configuration under pressure action 
and deformations imposed by dragging and hydrostatic deformations. The coordinate points at 
(6,3,1), (3,3,1) and (0,3,1) – named points 1, 2 and 3 respectively – have pressure and aperture 
values plotted against pressure step number to locally evaluate the field trend behavior along 
load steps. 
 

 
Hydraulic Problem 
 
Flow through porous 
matrix and faults 

 
Mechanic Problem 
 
Deformation in porous 
matrix and faults 

Pressure field distribution 

Fault apertures 
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4.1 Case 1 
 

For this case, the boundary planes located at x = 0, y = 0 and y = 6 are prescribed with 
null pressure generating 120,886 and 40,434 mechanic and hydraulic equations respectively. 
The fault line located at coordinate xyz = (6,3,z) is a source with prescribed pressure ranging 
on 2 increments of 5×10-4, 2.5×10-3, and 18 increments starting with 5×10-3 up to 9×10-2 up to 
through uniform steps of 5×10-3. Figure 3 presents pressure field distribution over the 
deformed domain for steps 1 to 12. The displacement field is amplified 40 times to improve 
its visualization. 
 

 
(a) 

 
(b) 

Figure 3.1 – Pressure field distribution over deformed domain for case 1, steps 1 (a) and 2 (b). 
 

 
(a) 

 
(b) 

Figure 3.2 – Pressure field distribution over deformed domain for case 1, steps 3 (a) and 4 (b). 
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(a) 

 
(b) 

Figure 3.3 – Pressure field distribution over deformed domain for case 1, steps 5 (a) and 6 (b). 
 

 
(a) 

 
(b) 

Figure 3.4 – Pressure field distribution over deformed domain for case 1, steps 7 (a) and 8 (b). 
 

 
(a) 

 
(b) 

Figure 3.5 – Pressure field distribution over deformed domain for case 1, steps 9 (a) and 10 
(b). 
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(a) 

 
(b) 

Figure 3.6 – Pressure field distribution over deformed domain for case 1, steps 11 (a) and 12 
(b). 

 
According to Fig. 3, pressure field is affected as aperture fault increases. Step 11 clearly 

pictures the stretching of pressure field along the fault. The fault behavior is characterized by 
an open-close cycle. As can be seen in step 6, an initial deformation tends to diminish the 
aperture, going through until it is completely closed in step 8. The cycle restart in step 9 
ending with the fault completely closed in step 12. This cycle has similar behavior until step 
20, performing the same period of 4 load increments to complete one cycle. 

This trend to close the fault is originated by a combination of dragging and hydrostatic 
deformation over the domain, which is significant, since the boundary condition drives this 
pressure spreading along the plane at x = 0. Searching for the first step that returns to the 
initial fault configuration, the jump from step 7 to 8 reveals that whenever the fault aperture is 
greater than zero at boundary, there is a sudden unbalanced fluid flux that has a tendency to 
abruptly close the fault. This behavior can be seen again in the jump from step 11 to 12. The 
same phenomenon occurred in jumps on steps 14 to 15, 17 to 18, and it is forecasted to 
happen during the jump from step 20 to 21. 

Figure 4 depicts the pressure and aperture at points 1, 2 and 3 for each pressure load step. 
Comparing figures (a) and (b), one can see that, for point 1, the linear pressure increasing 
goes along with the open-close cycle. This behavior is more evident at point 2, in which the 
pressure and aperture present similar behavior, with pressure increasing together with fault 
opening and with pressure decreasing together with the fault closing. As pressure load steps 
go through, it is clear that the aperture increases with pressure increasing. 
 

0.0E+00

1.5E-02

3.0E-02

4.5E-02

6.0E-02

7.5E-02

9.0E-02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2

 
(a) 

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3

 
(b) 

Figure 4 – Pressure versus step number (a); fault aperture versus step number (b) in points 1, 
2 and 3 for case 1. 
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The complete mechanical analysis was performed in 226 non-linear iterations, generating 
an average of 203 PCG iterations per non-linear iteration; hydraulic analysis needed a total of 
6,989 PCG iterations. Figure 5 depicts mechanical PCG iterations against load step number 
and interface elements opened against step number accumulated from total non-linear 
iterations number of each load step. It is clear the increasing/decreasing on the number of 
PCG iterations for both analyses, as the number of interface elements opened 
increases/decreases, as the fault aperture deteriorates the system condition number. 
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(b) 

Figure 5 – PCG iterations accumulated number versus step number (a); interface elements 
opened accumulated number versus step number (b). 

 
4.2 Case 2 
 

In this case, there is a source and sink lines located at coordinates xyz = (6,3,z) and (0,3,z) 
respectively, with pressure equally prescribed but with opposite sign, ranging from 5×10-3 up 
to 10-1 in 20 uniform steps of 5×10-3. There were generated 120,886 and 42,414 mechanic and 
hydraulic equations respectively. Figure 6 presents pressure field distributions over the 
deformed domain for steps 1 to 8. The displacement field is amplified 40 times for a better 
visualization. 
 

 
(a) 

 
(b) 

Figure 6.1 – Pressure field distribution over deformed domain for case 2, steps 1 (a) and 2 (b). 
 



CILAMCE 2005 – ABMEC & AMC, Guarapari, Espírito Santo, Brazil, 19th – 21st October 2005 

 
(a) 

 
(b) 

Figure 6.2 – Pressure field distribution over deformed domain for case 2, steps 3 (a) and 4 (b). 
 

 
(a) 

 
(b) 

Figure 6.3 – Pressure field distribution over deformed domain for case 2, steps 5 (a) and 6 (b). 
 

 
(a) 

 
(b) 

Figure 6.4 – Pressure field distribution over deformed domain for case 2, steps 7 (a) and 8 (b). 
 

In this example, the subpressure at sink produces an advance of complete fault closing, as 
can be seen in the jump from step 4 to 5. This behavior also happens in the jump from step 8 
to 9. From step 10 and ahead, point 3 presents aperture for steps 12, 16 and 20 with stride 4, 
as presents Fig. 7(b). In steps 12 and 16, the significant aperture generates sharp pressure 
jumps for the next steps, as can be seen in Fig. 7(a). 
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(b) 

Figure 7 – Pressure versus step number (a); fault aperture versus step number (b) in points 1, 
2 and 3 for case 2. 

 
The complete mechanical analysis was performed in 236 non-linear iterations, generating 

an average of 206 PCG iterations per non-linear iteration; hydraulic analysis needed a total of 
14, 935 PCG iterations. It can be seen in Fig. 8 that the maximum accumulated number of 
active fault elements is at step 8, generating the greatest number of mechanical PCG iterations 
(PCGm). Afterwards, the fault configuration presents a stable cycle until step 20, yielding a 
stable cycle of PCGm iterations. However, the number of PCG hydraulic (PCGh) iterations 
increases in periods of 4 steps. This behavior is due to the interface aperture increasing and 
then contributing to deteriorate the condition number of the hydraulic linear systems. That is, 
the mechanical system is dependent on the interface elements opened only, whereas the 
hydraulic system, besides this number, is also dependent of the aperture values. 
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(b) 

Figure 8 – PCG iterations accumulated number versus step number (a); interface elements 
opened accumulated number versus step number (b). 

 
4.3 Case 3 
 

This case deals with a source line located at coordinate xyz = (6,3,z) with 20 pressure load 
increments uniformly applied from 10-3 up to 0.02. There is a sink line with null pressure 
applied at coordinates xyz = (0,3,z). There were generated 120,886 and 42,414 mechanical and 
hydraulic equations respectively. Figure 9 presents the pressure field distribution over the 
deformed domain for steps 1 to 8. The displacement field is amplified 40 times for a better 
comprehension. 
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(a) 

 
(b) 

Figure 9.1 – Pressure field distribution over deformed domain for case 3, steps 1 (a) and 2 (b). 
 

 
(a) 

 
(b) 

Figure 9.2 – Pressure field distribution over deformed domain for case 3, steps 3 (a) and 4 (b). 
 

 
(a) 

 
(b) 

Figure 9.3 – Pressure field distribution over deformed domain for case 3, steps 5 (a) and 6 (b). 
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(a) 

 
(b) 

Figure 9.4 – Pressure field distribution over deformed domain for case 3, steps 7 (a) and 8 (b). 
 

In this example, the initial aperture configurations, until step 4, are enough to keep the 
cycle with a period greater than one step, since the complete closing of the fault is reached at 
step 5. However, from step 5 ahead, the cycle period is one step, between alternate 
configurations of close/opened fault, as can be seen in Fig. 10, producing a steady 
configuration of fault surfaces. 
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(b) 

Figure 10 – Pressure versus load step number (a); fault aperture versus step number (b) in 
points 1, 2 and 3 for case 3. 

 
The complete mechanical analysis was performed in 214 non-linear iterations, generating 

an average of 193 PCGm iterations per non-linear iteration; hydraulic analysis needed a total 
of 9,903 PCGh iterations. Figure 11 presents the PCG behavior as iterations counter along 
load increments and interface elements opened accumulated number for load increment. It can 
be seen the cyclic configuration of opened/closed fault starting at step 5 and going ahead. The 
PCGm and PCGh present a behavior similar to the observed in the previous cases, with 
PCGm driven by the number of interface elements opened and PCGh driven by this number 
and aperture value as can be observed in Fig. 11(a). The PCGh is influenced by the increasing 
amplitude as aperture value increases along pressure load steps. 
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Figure 11 – PCG iterations accumulated number versus step number (a); interface elements 
opened accumulated number versus step number (b). 

 
5. CONCLUSIONS 
 

This work presented a methodology for coupling mechanic and hydraulic problems in 
fractured porous media. The goal of this methodology is the use of the same topology for both 
analyses without any need of extra-manipulations of either mesh or results of each problem. 
This methodology is based on the implementation of three-dimensional prismatic six-noded 
interface elements with the same topology for mechanical and hydraulic fault modeling 

Results presented a good behavior showing however, a need to refine the study of sharp 
jumps between fault configurations in order to better capture the entire phenomena. 
Numerical effects were evaluated and PCG behavior presented along with fault configuration 
and aperture values revealing interesting fault configurations under different load conditions. 
The results of the deformed geometries clearly demonstrated the effects of fault aperture over 
the pressure field. The fault configurations illustrated the formation of hydraulic paths well 
characterized and the effect of load history over their configurations. 
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