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Abstract A parallel edge-based solution of three dimensional
viscoplastic flows governed by the steady Navier–Stokes
equations is presented. The governing partial differential
equations are discretized using the SUPG/PSPG stabilized
finite element method on unstructured grids. The highly non-
linear algebraic system arising from the convective and mate-
rial effects is solved by an inexact Newton-Krylov method.
The locally linear Newton equations are solved by GMRES
with nodal block diagonal preconditioner. Matrix-vector prod-
ucts within GMRES are computed edge-by-edge (EDE), dimin-
ishing flop counts and memory requirements. A comparison
between EDE and element-by-element data structures is pre-
sented. The parallel computations were based in a message
passing interface standard. Performance tests were carried
out in representative three dimensional problems, the sudden
expansion for power-law fluids and the flow of Bingham flu-
ids in a lid-driven cavity. Results have shown that edge based
schemes requires less CPU time and memory than element-
based solutions.

Keywords Viscoplastic flow · Edge-based data structures ·
Stabilized finite element formulations · Parallel computing

1 Introduction

Several modern material and manufacturing processes
involve non-Newtonian fluids, and in particular viscoplastic
fluids. Examples of non-Newtonian behavior can be found
in processes for manufacturing coated sheets, optical fibers,
foods, drilling muds and plastic polymers. Numerical sim-
ulations of non-Newtonian behavior represent a particular
and difficult case of incompressible fluid flows. In these flu-
ids the dependence between the viscosity and the shear rate
amplifies the nonlinear character of the governing equations.
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For a comprehensive presentation of numerical methods for
non-Newtonian fluid flow computations we refer to [12] and
[40].

The finite element computation of incompressible
Newtonian flows involves two sources of potential numer-
ical instabilities associated with the Galerkin formulation of
the problem. One is the presence of convective terms in the
governing equations. The other is due to the use of inappro-
priate combinations of interpolation functions to represent
the velocity and pressure fields. These instabilities are fre-
quently prevented by addition of stabilization terms to the
Galerkin formulation. In the context of non-Newtonian flu-
ids, the rheological equations are inherently nonlinear, thus
increasing the difficulties to find an efficient solution method.

In this work we consider the stabilized finite element for-
mulation proposed by Tezduyar [56] applied to solve steady
viscoplastic incompressible flows on unstructured grids. This
formulation, originally proposed for Newtonian fluids, allows
that equal-order-interpolation velocity-pressure elements are
employed, circumventing the Babuska-Brezzi stability con-
dition by introducing two stabilization terms. The first term is
the streamline upwind/Petrov-Galerkin (SUPG) introduced
by Brooks and Hughes [7] and the other one is the pressure-
stabilizing/Petrov-Galerkin (PSPG) stabilization proposed
initially by Hughes et al. [25] for Stokes flows and general-
ized by Tezduyar et al. [55] to the Navier–Stokes equations.

Many authors have considered finite element formula-
tions in combination with solution algorithms for nonlinear
problems arising from non-Newtonian incompressible flow
simulations. For instance, in [6] the Least-Squares method
was employed; in [1] a mixed-Galerkin finite element formu-
lation with a Newton–Raphson iteration procedure coupled
to an iterative solver was used, while in [44,50] the authors
adopted the Galerkin/least squares formulation (GLS)
associated also with Newton–Raphson algorithm; Meuric
et al. [37] used the SUPG formulation in combination with
Newton–Raphson and Picard iterations as a strategy to
circumvent computational difficulties in annuli flow compu-
tations. Some of these strategies employ analytical or direc-
tional forms of Jacobians in the Newton method.
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The inexact-Newton methods associated with iterative
Krylov solvers have been used to reduce computational ef-
forts related to non-linearities in many problems of computa-
tional fluid dynamics, offering a trade-off between accuracy
and the amount of computational effort spent per iteration.
According to Kelley [29] its success depends on several fac-
tors, such as: quality of initial Newton step, robustness of
Jacobian evaluation and proper forcing function choice.
Tezduyar et al. [52] presented a large number of 3D problems
computed on parallel platforms with Jacobian-Free Newton–
Krylov methods. Shadid et al. [48] have shown an inexact-
Newton method applied to problems involving Newtonian
fluids, mass and energy transport, discretized by SUPG/PSPG
formulation and equal-order interpolation elements. In [17]
we discussed the use of numerically approximated Jacobians
in the inexact Newton solution of viscoplastic flows with the
SUPG/PSPG formulation. Recently, Knoll and Keyes [30]
discussed the constituents of a broader class of inexact-New-
ton methods, the Jacobian-Free Newton–Krylov methods.
In this work we address only the essentials of the inexact-
Newton methods and the interested reader should refer to
Knoll and Keyes [30], and references therein, for a more de-
tailed presentation.

Element-based data structures have been extensively used
in the implementation of iterative solvers. A wide class of
preconditioners specially designed for element-by-element
(EBE) techniques can be found in literature [23,24,27,53,
54,59]. This type of data structure, besides fully exploiting
the sparsity of the system, is suitable for parallelization and
vectorization, as matrix-vector (matvec) products and right-
hand side evaluations can be written in the form of a sin-
gle loop structure [3,8,10,22]. The EBE preconditioners in
[27,53,54] are also built using element-level (or group-level
or cluster-level) computations with loop structures similar
to the matvec products. Another way of writing an efficient
code for matvec products is by using the compressed storage
row (CSR) format [47], in which only global nonzero coeffi-
cients are stored. In the CSR format, the algorithm for matrix-
vector products requires a two-loop structure: an outer loop
over the equations and an inner loop over each nonzero con-
tribution. In comparison with EBE implementations, this for-
mat has the advantage of storing only global coefficients, but
with the overhead of an inner loop that can not be unrolled,
specially if unstructured meshes are to be considered.

Edge-based data structures, or EDE for short, can be
viewed as a blend of EBE and CSR formats: only global
nonzero coefficients are stored and the single loop structure
is maintained. In the context of finite elements, this type of
data structure has been used since the early 1990s. Peraire
and Morgan [42] and Lyra et al. [33] used edge-based data
structures to compute the nodal balance of fluxes for com-
pressible flow. Luo et al. [32] used an edge-based approach in
the development of an upwind finite element scheme for the
solution of the Euler equations. Löhner [31] showed differ-
ent ways of grouping edges in the evaluation of residuals
for the Laplacian operator, aiming to reduce the number i/a
operations. More recently, Ribeiro et al. [45] presented an

edge-based implementation for stabilized semi-discrete and
space-time finite element formulations for shallow water equa-
tions. Other recent works on the subject include those of
Coutinho et al. [11], with applications to nonlinear solid
mechanics, Catabriga and Coutinho [9], for the implicit SUPG
solution of the Euler equations, and Soto et al. [51] for incom-
pressible flow problems. It has been shown by Ribeiro and
Coutinho [46] that for unstructured grids composed by tet-
rahedra, edge-based data structures offer more advantages
than CSR, particularly for problems involving many degrees
of freedom.

The present paper is organized as follows: Sects. 2 and
3 present the governing and constitutive equations and the
SUPG/PSPG finite element formulation with the inexact non-
linear method. Section 4 introduces the use of the edge-based
data structure in the present finite element context. Section 5
describes briefly the parallelism issues related to the solution
procedure and the test problems and concluding remarks are
presented in Sects. 6 and 7 respectively.

2 Governing and constitutive equations

Let� ⊂ �nsd be the spatial domain, where nsd is the number
of space dimensions. Let denote the boundary of �. We
consider the following velocity-pressure formulation of the
Navier–Stokes equations governing steady incompressible
flows:

ρ(u ·∇u− f)−∇ · σ = 0 on � (1)

∇ · u = 0 on � (2)

where ρ and u are the density and velocity, σ is the stress
tensor given as

σ (p,u) = −p I+ T, (3)

where p is the hydrostatic pressure, I is the identity tensor
and T is the deviatoric stress tensor.

The essential and natural boundary conditions associated
with Eqs. 1 and 2 can be imposed at different portions of the
boundary � and represented by,

u = g on �g (4)

n · σ = h on �h (5)

where �g and �h are complementary subsets of �.
The relationship between the stress tensor and deforma-

tion rate for Newtonian fluids is defined by a proportionality
constant, which represents the momentum diffusion experi-
enced by the fluid. Therefore, the deviatoric tensor in Eq. 3
can be expressed by

T = 2µε(u) (6)

whereµ is the proportionality constant known as the dynamic
viscosity and ε is the deformation rate tensor,

ε(u) = 1

2
[∇u+ (∇u)T] (7)
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The fluids that do not obey the relationship expressed in
Eq. 6 are known as non-Newtonian fluids. The main char-
acteristic of these fluids is the dependence of viscosity on
other flow parameters, such as, deformation rate and even
the deformation history of the fluid. In these cases Eq. 6 can
be rewritten as

T = 2µ(γ̇ ) ε(u) (8)

where γ̇ is the second invariant of the strain rate tensor and
µ(γ̇ ) is the apparent viscosity of the fluid [13,40].

In this work the non-Newtonian flows considered are
viscoplastic fluids described by power law and Bingham
models. The rheology models and non-Newtonian viscosity
relations follow the definitions discussed in [2,12,19,40];
thus for the power law fluids we have,

µ(γ̇ ) =
{
µ0Kγ̇

n−1 if γ̇ > γ̇0

µ0Kγ̇
n−1
0 if γ̇ ≤ γ̇0

(9)

whereK denotes the consistency index, µo is a nominal vis-
cosity,n is the power law index and γ̇0 is the cutoff value for γ̇ .
For Bingham fluids we use the bi-viscosity model expressed
as,

µ(γ̇ ) =
{
µ0 + σ Y

γ̇
if γ̇ > σ Y

µr−µ0

µr if γ̇ ≤ σ Y
µr−µ0

(10)

where σ Y is the yield stress, µr is the Newtonian viscos-
ity chosen to be at least one order of magnitude larger than
µo. Typically µr is approximately 100µo to represent a true
Bingham fluid behavior [2,5].

3 Finite Element Formulation

Let us assume following Tezduyar [56] that we have some
suitably defined finite-dimensional trial solution and test func-
tion spaces for velocity and pressure, Shu , V

h
u , S

h
p and

V hp = Shp. The finite element formulation of Eqs. 1 and
2 using SUPG and PSPG stabilizations for incompressible
fluid flows [56] can be written as follows: find uh ∈ Shu and
ph ∈ Shp such that ∀wh ∈ V hu and ∀qh ∈ V hp :∫
�

wh · ρ(uh ·∇uh − f) d�+
∫
�

ε(wh) : σ (ph,uh) d�

−
∫
�

wh · h d� +
∫
�

qh∇ · uhd�

+
nel∑
e=1

∫
�e

τSUPGuh ·∇wh · [ρ(uh ·∇uh)

−∇ · σ (ph,uh)− ρf
]

d�

+
nel∑
e=1

∫
�e

1

ρ
τPSPG∇qh · [ρ(uh ·∇uh)

−∇ · σ (ph,uh)− ρf
]

d� = 0 (11)

In the above equation the first four integrals on the left
hand side represent terms that appear in the Galerkin formu-
lation of the problem (Eqs. 1–5), while the remaining inte-
gral expressions represent the additional terms which arise
in the stabilized finite element formulation. Note that the sta-
bilization terms are evaluated as the sum of element-wise
integral expressions, where nel is the number of elements in
the mesh. The first summation corresponds to the Streamline
Upwind/Petrov-Galerkin (SUPG) term and the second to the
Pressure-Stabilizing/Petrov-Galerkin (PSPG) term. We have
calculated the stabilization parameters according to [55], as
follows:

τSUPG = τPSPG =
⎡
⎣
(

2
∥∥uh

∥∥
h#

)2

+ 9

(
4ν

(h#)2

)2
⎤
⎦
−1/2

(12)

Here uh is the local velocity vector, ν represent the kinematic
viscosity and the “element length” h# is defined to be equal
to the diameter of the sphere which is volume-equivalent to
the element.

The spatial discretization of Eq. 11 leads to the following
system of nonlinear equations,

N(u)+ Nδ(u)+ Nv(u)− (G+Gδ)p = fu

GT u+ Nψ(u)+Gψp = fp
(13)

where u is the vector of unknown nodal values of uh and
p is the vector of unknown nodal values of ph. The non-
linear vectors N(u),Nδ(u),Nψ(u), and Nv(u), the matrices
G,Gδ , and Gψ emanate, respectively, from the convective,
viscous and pressure terms. The vectors fu and fp are due
to the boundary conditions 4 and 5. The subscripts δ and ψ
identify the SUPG and PSPG contributions respectively. In
order to simplify the notation we denote by x = (u,p) a vec-
tor of nodal variables comprising both nodal velocities and
pressures. Thus, Eq. 13 can be written as,

F(x) = 0 (14)

where F(x) represents a nonlinear vector function.
A particularly simple scheme for solving the nonlinear

system of Eq. 14 is a fixed point iteration procedure known
as the successive substitution, (also known as Picard itera-
tion, functional iteration or successive iteration) which may
be written as

K(xk)xk+1 = −rk (15)

here the nonlinearity is evaluated at the known iterate xk
where K is a first order approximation of the Jacobian F′(x),
rk is the residual vector, and a non-symmetric linear system
must be formed and solved at each iteration. Although the
convergence rate of this scheme can be slow (its convergence
rate is only asymptotically linear), the method converges for a
fair range of Reynolds numbers. This, together with its sim-
plicity of implementation and relativity insensitivity to the
initial iterate x0, accounts for its popularity and recommends
its use for the solution of a wide variety of problems.

One drawback of nonlinear methods is the need to solve a
local linear system at each stage. Computing the exact solu-
tion using a direct method can be expensive if the number
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Fig. 1 Edge disassembling of a tetrahedral finite element for viscoplastic flow problems

of unknowns is large and may not be justified when xk is far
from a solution [13]. Thus, one might prefer to compute some
approximate solution, leading to the following algorithm:

For k = 0 step 1 until convergence do

F ind some ηk ∈ [0, 1) AND sk that satisfy
‖rk +K(xk)sk+1‖ ≤ ηk ‖rk‖
update xk+1 = xk + sk (16)

for some ηk ∈ [0, 1), where ‖ • ‖ is a norm of choice. This
formulation naturally allows the use of an iterative solver
like GMRES or BiCGSTAB: one first chooses ηk and then
applies the iterative solver to Eq. 15 until a sk is determined
for which the residual norm satisfies Eq. 16. In this context
ηk is often called the forcing term, since its role is to force
the residual of Eq. 15 to be suitably small. The forcing term
can be specified in several ways (see, Eisenstat and Walker
[16] for details) and in this work the following definition was
employed

ηk = 0.9‖F(xk)‖2/‖F (xk−1) ‖2. (17)

4 Edge-Based Data Structures

Edge-based finite element data structures have been intro-
duced for explicit computations of compressible flow in
unstructured grids composed by triangles and tetrahedra

[32,43]. It was observed in these works that residual com-
putations with edge-based data structures were faster and
required less memory than standard element-based residual
evaluations. Following these ideas, Coutinho et al. [11] and
Catabriga and Coutinho [9] derived edge-based formulations
respectively for elasto-plasticity and the SUPG formulation
for inviscid compressible flows. They used the concept of
disassembling the finite element matrices to build the edge
matrices. For three dimensional viscoplastic flow problems
on unstructured meshes, we may derive an edge-based finite
element scheme by noting that the element matrices can be
disassembled into their edge contributions as,

Ke =
m∑
s=1

Tes (18)

where Tes is the contribution of edge s to Ke and m is the
number of edges per element (six for tetrahedral). For
instance, Fig. 1 shows a tetrahedron and its edge disassem-
bling into its six edges.

In Fig. 1, each Tsij is a ndof ×ndof sub-matrix, where ndof
is the number of degrees of freedom (four for fully coupled
incompressible fluid flow). The arrows represent the adopted
edge orientation. Denoting by E the set of all elements shar-
ing a given edge s, we may add their contributions, arriving
to the edge matrix,

Ks =
∑
s∈E

Tes (19)
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The resulting matrix for incompressible fluid flow is non-
symmetric, preserving the structure of the edge matrices given
in Fig. 1. Thus, in principle we need to store two off-diagonal
4×4 blocks and two 4×4 diagonal blocks per edge. As we
shall see below this storage area can be reduced.

When working with iterative solvers like GMRES, it is
necessary to compute sparse matrix-vector products at each
iteration. A straightforward way to implement the edge-by-
edge (EDE) or element-by-element (EBE) matrix-vector
product is,

Kp =
ne∑
l=1

Klpl (20)

where ne is the total number of local structures (edges or ele-
ments) in the mesh and pl is the restriction of p to the edge
or element degrees-of-freedom.

Considering that we may add all the local nodal block
diagonals in a global nodal block diagonal matrix and we may
store only the off-diagonal blocks (by edges or elements), it
is possible to improve the matrix-vector product (Eq. 20)
disregarding redundant nodal block diagonal coefficients for
each local structure [9]. This scheme is an extension of that
proposed by van Gijzen [57] where is considered only the
main diagonal instead of the nodal block diagonal. Thus, the
matrix-vector product may be rewritten as

Kp = B(K)p+
ne

A
l=1

[Kl − B(Kl)]pl (21)

where B(K) stores the nodal block diagonal of K and A is
the assembling operator. In the above matrix-vector prod-
uct the first sum involves only global quantities while the
second is very similar to the standard matrix-vector product
(Eq. 20). Note that we need to store only the off-diagonal
blocks associated to each structure (edge or element), thus
reducing memory requirements. It is also important to
observe that in the case of the edge-based matrix-vector prod-
uct (Eq. 21) only global coefficients are involved in the com-
putations. The resulting algorithm is,

For each local structure l do :

Recover the global numbering of the local degrees of

f reedom.

Gathering operation : pl ← p

Perf ormproduct : kpl = [Kl − B(Kl )
] · pl

Scattering and accumulation operations : kp← kp+ kpl

end f or l

kp = B(K)p+ kp

The B(K)p product performed at nodal level follows the
same ideas described in the above algorithm (gather, local
computations and scatter and accumulation). Considering
the standard pointers, localization matrices and destination
arrays of finite element implementations [26] applied to edge
data structures, it is easy to verify that pointers, localization
matrices and destination arrays correspond to a two-node
element, that is, an edge. In Table 1 we compare the storage

Table 1 Memory to hold matrix coefficients and computational costs
for element and edge-based matrix-vector products for tetrahedral finite
element meshes

Data structure Memory flop i/a

Element 1,056 nnodes 2,112 nnodes 1,408 nnodes
Edge 224 nnodes 448 nnodes 448 nnodes

requirements to hold the coefficients of the element and edge
matrices as well as the number of floating point (flop) and
indirect addressing (i/a) operations for computing matrix-
vector products (Eq. 21) using element and edge-based data
structures.

All data in this table is referred to nnodes, the number of
nodes in the finite element mesh. According to [31], the fol-
lowing estimates are valid for unstructured 3D grids, nel ≈
5.5× nnodes, nedges ≈ 7× nnodes.

Clearly data in Table 1 favors the edge-based scheme.
However, compared to the element data structure, the edge
scheme does not present a good balance between flop and i/a
operations. Minimizing indirect addressing and improving
data locality are major concerns to achieve high performance
on current processors. Löhner and Galle [34] and Coutinho
et al. [36] discuss several enhancements to the simple edge
scheme introduced here, that mitigate the effects of indi-
rect addressing and bad data locality. However they were
not employed in this work.

5 Parallel Implementation

The edge-based finite element formulation presented in the
previous sections was implemented based in the message
passing parallelism model (MPI) [14]. The original unstruc-
tured grid was partitioned into non-overlapped sub-domains
by the use of the METIS PartMeshDual routine provided
by Metis package [28]. Afterwards, the partitioned data was
reordered to avoid indirect memory addressing and IF clauses
inside hot loops and MPI communications. Therefore, the
equation numbers shared by the partitions were relocated to
the last entries of the corresponding arrays. The edge extrac-
tion was also parallelized at runtime. Thus, the element parti-
tions were employed at each processor to build a local set of
edges. The element incidences at each processor were kept
to allow residual computations due to the material nonlinear-
ities. The residual vector (Eq. 15) was computed and assem-
bled elementwise in a single DO-LOOP in each partition.

Most of the computational effort spent during the iterative
solution of linear systems is due to evaluations of matrix-
vector products or matvec for short. In our tests matvec oper-
ations achieved 92% of the total computational costs. In EBE
and EDE data structures this task is message passing par-
allelizable by performing matvec operations at each parti-
tion level, then assembling the contribution of the interface
equations calling MPI AllReduce routine over the last array
entries. Finally, it is important to note that edge (and element)
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Fig. 2 Schematic model of a channel with sudden expansion (1:3), h = 1, H = 3, w = 1 and L = 30

Fig. 3 Finite element mesh with 382,985 tetrahedron elements and 72,593 nodes

matrix coefficients are computed in single DO-LOOPS also
in each partition.

6 Numerical Results

In the following sections two benchmark problems employ-
ing power law and viscoplastic fluids are shown to evaluate
the performance improvements, due the edge-based data
structure, and accuracy of our implementation. The first prob-
lem consists in a 1:3 sudden expansion for power law fluids
where a phenomenon of symmetry breaking is observed after
a critical Reynolds number is reached. The second problem
is the well known lid driven cavity problem extended for the
three dimensional case where a Bingham fluid flows and the
eye vortex position and rigid zones are used as validation
parameters.

All computations were made on two SGI Altix 3700 sys-
tems (32/64 Intel Itanium-2 CPUs with 1.3/1.5 GHz and
64/128 Gb of NUMA flex memory) and a Quad Dell
PowerEdge Itanium-2 1.3 GHz system with 8 Gb of memory.
All systems run Linux and Intel Fortran compiler 8.1. No
optimizations further those provided by standard compiler
flags were used.

For all tests the numerical procedure considered a fully
coupled u-p version of the stabilized formulation using lin-
ear tetrahedron elements. The parallel solver is composed by
an outer inexact-Newton loop and an inner nodal block diag-
onal preconditioned GMRES(45-100) linear solver, where

(45–100) corresponds to the range of Krylov vectors
employed.

6.1 Sudden expansion flow for power-law fluids

Considerable attention has been given to the problem of a
fluid flow through a channel with a sudden expansion for
Newtonian fluids. In this problem, after a critical Reynolds
number is reached an instability region develops, a symmetry
bifurcation begins to appear and the problem presents a
pseudo-steady behavior. This phenomenon is frequently re-
ferred as symmetry breaking and has been studied for several
authors (see [4,15,18,21,39,49] for details).

We have tested the expansion ratio of 1:3 and the schematic
model and finite element mesh are shown in Figs. 2 and
3. The unstructured mesh employed was built with 382,985
tetrahedron elements, 72,593 nodes and 473,383 edges, yield-
ing a system with 260,782 equations. The boundary condi-
tions applied were: inlet mean velocity equal to one, no slip
boundary condition in the top and bottom walls, no leak-
age condition at the side walls (the normal velocity was
set to zero) and null traction condition at the outlet. For
this problem we have considered the Reynolds number as
Re = ρu2−nhn/K , where u is the inlet mean velocity, h is
the inlet height, n is the power law index (1 for Newtonian
fluid) and K is the power law consistency index (equal the
viscosity for Newtonian cases).

Following Fearn et al. [18] we have determined the sym-
metry breaking when a non null vertical velocity is detected
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Fig. 4 Vertical velocity for Newtonian, pseudoplastic (n = 0.5) and dilatant (n = 1.5) fluids in a measurement point placed at 6.4 h

Table 2 Critical Reynolds number for symmetry breaking in the 1:3 expansion

Definition of Re Recr Recr (umean, h)

Fearn et al. [18]a umax , h/2 40.45/47.3 53.9/63.1
Manica and De Bortoli [35] umax , h/2 44.0–45.0 58.7–60.0
Shapira et al. [49] umax , h 82.6 55.0
Drikakis [15] umax , h 80.0 53.3
Battaglia et al. [4] umean, h 53.8 53.8
Hawa and Rusak [21] umean, h 53.8 53.8
This work umean, h 56.0 56.0
aExperimental/simulated

Fig. 5 Sudden expansion streamlines for the pseudo-plastic case (n = 0.5)

in a measurement point placed at 6.4 h from the expansion
as shown in Fig. 3. The magnitude of the vertical velocity at
this measurement station is plotted for Newtonian, pseudo-
plastic (n = 0.5) and dilatant (n = 1.5) cases in Fig. 4. In
Table 2 we list the characteristic velocity and height used
by several authors to compute the critical Reynolds number,
where umax and umean are respectively the inlet maximum and
mean velocity. In the last two columns we give the critical

Reynolds number computed by the different authors and with
the characteristic parameters adopted here.

Note in Table 2 that the critical Reynolds number of
the present work for the Newtonian case is in good agree-
ment with those listed for other authors. Figure 4 shows that
for power law cases the critical Reynolds numbers for the
first bifurcation were around the same value than for the
Newtonian case, which is consistent with earlier results of
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Fig. 6 Sudden expansion streamlines for the Newtonian case (n = 1.0)

Fig. 7 Sudden expansion streamlines for the dilatant case (n = 1.5)

Fig. 8 GMRES tolerance and nonlinear iteration time for Newtonian sudden expansion flow with Reynolds 50

Manica and De Bortoli [35]. Figures 5, 6, 7 show the stream-
lines for Reynolds 40, 50, 80 and 130 for dilatant, Newtonian
and pseudo-plastic cases respectively. We may verify that

the symmetry breaking is clearly characterized in all cases.
Further, a third vortex appears for n = 1.0 and n = 1.5,
while for n = 0.5 it is not present. These observations are
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Fig. 9 Convergence history for Newtonian sudden expansion flow with Reynolds 50

Fig. 10 GMRES tolerance and nonlinear iteration time for power law (n = 1.50) sudden expansion flow with Reynolds 80

in good agreement with those presented by Manica and De
Bortoli [35].

Figures 8 and 9 describe the behavior of the inexact non-
linear solver for the Newtonian case at Reynolds 50. Note that
at the beginning of the computation the large linear tolerance
(0.99) allowed fast nonlinear solution steps and, according
to the ratio of relative residual decrease, the linear tolerance
was adapted up to 0.075, at nonlinear iteration 28, increasing
again until convergence. The resulting convergence history
is shown in Fig. 9, where we can observe a superlinear de-
crease of the relative residual Euclidean norm up to 10−5, fol-
lowed by a linear progression towards the desired accuracy
(10−6).

The GMRES tolerances, nonlinear iteration times and the
convergence history for the dilatant case at Reynolds 80 are

plotted in Figs. 10 and 11. For this case a maximum GMRES
tolerance of 0.3 was employed to allow a convergent solu-
tion. The smallest tolerance adapted by the inexact nonlinear
solver was 0.137 and occurred at step 6, where the relative
residual suddenly decreased from step 5 to 6.At this nonlinear
step GMRES(45) spent 26.87 s to reach the prescribed accu-
racy.At all other iterations the solution procedure at each non-
linear step spent on the average 10 s to be solved for tolerances
around the maximum specified value.

Table 3 lists the characteristic solution parameters for the
cases shown in Figs. 5, 6, and 7.All computations were halted
when the relative residual (‖rk‖/‖r0‖) and the relative solu-
tion increment (‖sk‖/‖xk‖) decreased six orders of magni-
tude. We may see that the easiest cases were those involving
Newtonian and dilatant fluids. For non-Newtonian cases, at
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Fig. 11 Convergence history for power law (n = 1.50) sudden expansion flow with Reynolds 80

Table 3 Solution parameters for the 1:3 sudden expansion flows

Nonlinear iterations Newtonian iterations Final relative residual GMRES tolerance

Maximum Minimuma

Pseudo-plastic
(n = 0.5)
Re = 40 45 5 1.64× 10−7 0.100 0.052 (8)
Re = 50 48 5 2.00× 10−7 0.100 0.049 (7)
Re = 80 222 5 2.11× 10−7 0.100 0.047 (7)
Re = 130 109 5 4.74× 10−7 0.100 0.100 (–)

Newtonian
Re = 40 34 – 9.37× 10−7 0.990 0.075 (25)
Re = 50 124 – 9.56× 10−7 0.990 0.076 (28)
Re = 80 385 – 6.20× 10−7 0.990 0.066 (84)
Re = 130 832 – 9.89× 10−7 0.990 0.046 (311)

Dilatant
(n = 1.5)
Re = 40 42 3 8.71× 10−7 0.990 0.226 (13)
Re = 50 43 2 7.19× 10−7 0.990 0.172 (35)
Re = 80 87 5 3.60× 10−7 0.300 0.137 (7)
Re = 130 117 5 6.73× 10−7 0.300 0.150 (10)
aThe number between parentheses is the nonlinear iteration that the minimum GMRES tolerance occurred

the beginning of the solution procedure the domain does not
have a velocity distribution to compute a non null shear stress.
We have observed that this may lead to some initialization
problems. For instance, for power law fluids, the evaluation
of Eq. 10 leads to a constant viscosity value (µ0) and for
Bingham fluids a null shear stress means that the fluid flow
cutoff value was not achieved and the domain is filled with
a high and “rigid” viscosity. Therefore, to circumvent these
initialization problems we have run some initial iterations
with Newtonian fluid before activate the non-Newtonian vis-
cosity evaluation as given in Table 3. It is important to note
that the cases for Reynolds numbers greater than 50 spent
more nonlinear iterations to converge. It coincides with the

range where the symmetry breaking begins to appear.We may
observe that the minimum GMRES tolerances have occurred
at the beginning of the solution process in all cases. It points
to convergence ratios better at the initial nonlinear iterations
than at the end when the non-Newtonian rheology has more
influence.

For the pseudo-plastic cases listed in Table 3 the max-
imum linear tolerance in the inexact nonlinear solver was
decreased up to 0.1 to allow convergent solutions. Most of the
cases employed 45 Krylov vectors for GMRES; the excep-
tions were the cases with Reynolds numbers 40 and 130 for
pseudo-plastic and dilatant fluids that we have used 100 and
55 Krylov vectors respectively.
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Fig. 12 Data structure performance and influence of the Reynolds number for pseudo-plastic flow in a sudden expansion

Fig. 13 Data structure performance and influence of the Reynolds number for Newtonian flow in a sudden expansion

Performance comparisons for edge and element data struc-
tures for the rheologies considered are depicted in Figs. 12,
13, and 14. The performance improvement provided by the
edge-based data structure may be clearly seen for all cases
studied. The solution time for problems employing edges in
the matrix-vector products were, on average, 2.5 faster when
compared with those using standard EBE matvec computa-
tions.

6.2 Leaky lid-driven cavity for Bingham fluids

The problem of a fluid flowing in a leaky lid-driven cav-
ity has been extensively used to evaluate CFD codes with
Newtonian fluids for many years. In this section we present

our contribution for this problem extended to three dimen-
sional cases employing Bingham fluids. Some authors have
recently studied this problem for viscoplastic fluids. Mitsoulis
and Zisis [38] studied the position of the main vortex eye and
the evolution of rigid zones for Reynolds number equal to
one. These authors used the Papanastasiou [41] modification
to represent the Bingham constitutive equation with bilinear
quadratic finite elements. Vola et al. in [58] have proposed a
numerical method based on the characteristic Galerkin for-
mulation and the Fortin–Glowinski decomposition to deal
with non differentiable terms of the constitutive law. They
study the unsteady Bingham flows for Reynolds numbers up
to 1,000 without any regularization of the constitutive law.

The 3D model used in the present work and the corre-
sponding boundary conditions are depicted in Fig. 15.
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Fig. 14 Data structure performance and influence of the Reynolds number for dilatant flow in a sudden expansion

Fig. 15 Flow in a three dimensional leaky lid-driven cavity—geometry
and boundary conditions

Table 4 Meshes for the three dimensional leaky lid-driven cavity

Elements Edges Nodes Equations

cav-31 148,955 187,488 32,768 117,367
cav-51 663,255 819,468 140,608 525,556
cav-71 1,789,555 2,193,048 373,248 1,421,776
cav-101 5,151,505 6,273,918 1,061,208 4,101,106

The meshes employed to evaluate parallel performance are
listed in Table 4.

Figure 16 shows the Bingham viscosity and streamlines
for several Reynolds numbers and plastic threshold values
computed with mesh cav-51. We may observe that for higher
plastic threshold values the rigid zones, where the fluid is

highly viscous, are proportionally larger and the vortex eye
tends to be pushed up to the lid of the cavity. Thus, as the
viscous zone increases the cavity seems to be smaller and
the fluid is forced to flow at the top region of the model.
Furthermore, the vortex eye is displaced to the outflow direc-
tion according to the Reynolds number. For higher Reynolds
number the vortex is displaced to the leakage direction as
shown in Fig. 16 for the cases with Reynolds number equal
to 1,000.

For the cases shown in Fig. 16 we have carried out the
computations up to a relative residual (‖rk‖/‖r0‖) and rela-
tive solution increment (‖sk‖/‖xk‖)decrease of four orders of
magnitude or 1,000 nonlinear iterations were reached. It was
not necessary maximum GMRES(45) tolerances smaller than
0.99 to develop convergent solutions for any case considered
and the inexact nonlinear solver has adapted the tolerance up
to the minimum of 0.251. However, the maximum number of
nonlinear iterations was reached in some cases as shown in
Table 5. Again we observed that the minimum GMRES toler-
ances have occurred at the beginning of the solution process
in all cases.

As suggested in previous works (see [58,38]) we have
validated our results with the position of the main vortex eye
inside the cavity. The x and z coordinates of the main vortex
eye for several plastic thresholds at Reynolds number equal
to 1,000 are shown in Fig. 17. We may note a good agreement
between the results of this work (dots) with those presented
by Vola et al. [58] (lines).

In Fig. 18 (left) is shown the scaled speedup on the SGI
Altix computed according to Gustafson law [20] and defined
as Ss = n + (1 − n)s, where n is the number of proces-
sors and s corresponds to the normalized time spent in the
serial portion of the program. For these performance tests we
have ran the problem with Re = 1,000 and plasticity thresh-
old 10 up to a relative residual decrease of three orders of
magnitude with the models listed in Table 4. The scalability
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Fig. 16 Bingham viscosity and streamlines for the lid driven cavity flow (cav-51 model)
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Table 5 Solution control parameters for the Bingham leaky lid-driven cavity flow

Nonlinear iterations Newtonian iterations Final relative residual GMRES tolerance
Maximum Minimum

Re = 1
σY = 2 Pa 1,000 5 5.05× 10−4 0.99 0.320 (7)
σY = 5 Pa 1,000 5 6.75× 10−4 0.99 0.337 (6)
Re = 1000
σY = 1 Pa 382 2 9.63× 10−5 0.99 0.320 (7)
σY = 5 Pa 1,000 2 5.56× 10−4 0.99 0.251 (10)
σY = 10 Pa 572 2 9.72× 10−5 0.99 0.414 (11)
σY = 20 Pa 740 1 9.86× 10−5 0.99 0.551 (5)

Fig. 17 Position of the vortex eye according to the plasticity threshold for Re = 1,000 (cav-51 model)

Fig. 18 Scaled speedup on SGI Altix for EDE data structure and cav-101 model (left). Scalability for the models listed in Table 4 (right)
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Fig. 19 Scaled efficiency for EDE data structure on SGI Altix (left). Wall time comparisons for EBE and EDE data structures for cav-71 mesh
(right)

reached on SGI Altix is shown in Fig. 18 (right). Note that
when increasing the problem size the serial fraction s tends
to shrink as more processors are employed. In our tests with
SGI Altix 3700 we have employed up to 32 Intel’s Itanium-2
processors and according to [20] the scaled speedup should
be a linear function with moderate slope 1 − n such as the
line we have measured and shown in Fig. 18.

The scaled efficiency on SGI Altix for EDE data structure
is presented in Fig. 19 (left). Good results may be observed
for the cavity models, especially for those with larger num-
ber of degrees of freedom. In some cases efficiencies greater
than 100% may be attributed to cache effects. The time spent
when solving the cav-71 problem with EBE and EDE data
structures is plotted in Fig. 19 (right). We may observe that
the EDE solutions were faster than the EBE in all cases.
Nevertheless, the CPU time ratios between EBE and EDE
solutions are around 2.5 up to 16 processors. For 32 pro-
cessors this ratio decreases. This is an indication that as we
refine the mesh, CPU time ratios between EBE and EDE has
a tendency to remain around this value.

7 Conclusions

The SUPG/PSPG finite element formulation for three dimen-
sional incompressible viscoplastic fluid flows was presented
and the results validated with those provided by several works.
The nonlinear character due to the non-Newtonian viscous
and convective terms of the Navier–Stokes equations was
treated by an inexact-nonlinear method allowing a good trade-
off between convergence and computational effort. At the

beginning of the solution procedure the large linear tolerances
produced fast nonlinear steps, and as the solution progresses,
the inexact nonlinear method adapts the tolerances to reach
the desired accuracy. The linear systems of equations within
the nonlinear solution procedure were solved with the nodal-
block diagonal preconditioned GMRES. An edge-based data
structure was introduced and successfully employed to im-
prove the performance of the matrix-vector products within
the iterative solver. The results showed that the computing
time when using EDE data structure was on the average 2.5
times faster than for those problems using standard EBE. The
computations were performed in a message passing parallel-
ism environment presenting good speedup and scalability.
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Babuška–Brezzi condition: a stable Petrov–Galerkin formulation
of the Stokes problem accommodating equal-order interpolations.
Comput Meth Appl Mech Eng 59:85–99

26. Hughes TJR (1987) The finite element method: linear static and
dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

27. Hughes TJR, Winget J, Levit I, Tezduyar TE (1983) New alter-
nating direction procedures in finite element analysis based upon
EBE approximate factorizations. In: Atluri SN, Perrone N (eds)
Computer methods for nonlinear solids and structural mechanics,
vol 54. ASME, New York, pp 75–109

28. Karypis G, Kumar V (1998) Metis 4.0: unstructured graph par-
titioning and sparse matrix ordering system. Technical report.
Department of Computer Science, University of Minnesota, Min-
neapolis, ; http://www.users.cs.umn.edu/∼karypis/metis.

29. Kelley CT (1995) Iterative methods for linear and nonlinear equa-
tions. In: Frontiers in applied mathematics. SIAM, Philadelphia

30. Knoll DA, Keyes DE (2004) Jacobian-free Newton–Krylov meth-
ods: a survey of approaches and applications. J Comput Phys
193:357–397

31. Lohner R (1994) Edges, stars, superedges and chains. Comput
Meth Appl Mech Eng 111(3–4):255–263
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