

PARALLEL INEXACT NEWTON-TYPE METHODS FOR THE SUPG/PSPG

SOLUTION OF STEADY INCOMPRESSIBLE 3D NAVIER-STOKES
EQUATIONS IN PC CLUSTERS

Renato N. Elias
Alvaro L. G. A. Coutinho
Marcos A. D. Martins
Rubens M. Sydenstricker
Center for Parallel Computations and Department of Civil Engineering
Federal University of Rio de Janeiro, P. O. Box 68506,
RJ 21945-970 – Rio de Janeiro, Brazil
{renato, alvaro, marcos, rubens}@nacad.ufrj.br

Abstract. The finite element discretization of the three-dimensional incompressible
Navier-Stokes yields a non-linear problem due the convective terms in the momentum
equation. In this work we describe a parallel MPI-based implementation for PC clusters of
inexact Newton-type schemes associated to the SUPG/PSPG stabilized finite element
formulation of steady incompressible flows. The resulting linear systems of equations are
solved iteratively by an element-by-element preconditioned GMRES solver. Performance
of the parallel iterative solver and the nonlinear strategy is evaluated by numerical tests
in a benchmark problem.

Keywords. Parallel finite elements, Inexact Newton methods, Navier-Stokes equations.

1 INTRODUCTION

The finite element computation of incompressible Newtonian flows involves two sources of
potential numerical instabilities associated with the Galerkin formulation of the problem.
One source is due to the presence of convective terms in the governing equations. The
other source is due to using inappropriate combinations of interpolation functions to
represent the velocity and pressure fields. These instabilities are frequently prevented by
addition of stabilization terms into the Galerkin formulation.

 In this work we consider the stabilized finite element formulation proposed by
Tezduyar (1991) applied to solve steady Newtonian incompressible flows. This
formulation allows that equal-order-interpolation velocity-pressure elements are
employed, circumventing the Babuska-Brezzi stability condition by introducing two
stabilization terms. The first term is the Streamline Upwind Petrov-Galerkin (SUPG)
introduced by Brooks and Hughes (1982) and the other one is the Pressure Stabilizing

Petrov Galerkin (PSPG) stabilization proposed initially by Hughes et al (1986) for Stokes
flows and generalized by Tezduyar et al (1992) to high Reynolds number flows.

 The discretization of the incompressible Navier-Stokes equations gives rise to a
system of nonlinear algebraic equations due the presence of convective terms in the
momentum equation. Among several strategies to solve nonlinear problems the Newton’s
methods is attractive because it converges rapidly from any sufficient good initial guess
(Dembo et al., 1982). However, the implementation of Newton’s method involves some
considerations: Newton’s method requires the solution of linear systems at each stage and
exact solutions can be too expensive if the number of unknowns is large. In addition, the
computational effort spent to find exact solutions may not be justified when the nonlinear
iterates are far from the solution. Therefore, it seems reasonable to use an iterative
method, such GMRES, to solve these linear systems only approximately.

 The inexact-Newton method associated with iterative Krylov solvers have been
used to reduce computational efforts related to non-linearities in many problems of
computational fluid dynamics, offering a trade-off between the accuracy and the amount
of computational effort spent per iteration. According to Kelley (1995) its success depends
on some factors, such as: quality of initial Newton step, robustness of Jacobian evaluation
and proper forcing function choice.

 Many authors have proposed combinations between stabilized finite element
formulations and algorithms to solve the nonlinear problems arising from non-Newtonian
incompressible flow simulations. Some of these strategies employ analytical or directional
forms of Jacobians in the Newton method. The analytical derivative of the stabilization
terms are often difficult to evaluate. In this work we have tested the performance of the
approximate Jacobian form described by Tezduyar (1999). This numerically approximated
Jacobian is based in Taylor’s expansions of the nonlinear terms and presents an
alternative and simple way to implement the tangent matrix employed by inexact Newton-
type methods.

Three-dimensional non-linear finite element computations can yield linear systems
of thousands and sometimes billions of equations. Several different approaches for
designing and implementing parallel programs have been developed to solve such
problems. However, two dominant alternatives have emerged: message passing and
multithreading. According to Dongarra et al (2002) message passing is by far the most
widely used approach to parallel computing, at least on large parallel systems. In the
message-passing model, a computation comprises one or more processes that communicate
by calling library routines to send and receive messages. There are several library-based
implementations to provide these inter-processes communications, such as, Message
Passing Interface (MPI) and Parallel Virtual Machine (PVM). In this work we have used
the MPI standard. The message passing model has the advantages that programs become
highly portable and the programmer has explicit control over the memory used by each
process (Dongarra et al 2002). A crucial task when developing a message passing parallel
program is to decompose the global domain into pieces, or partitions, which can be run in
parallel with minimal communication and good load balance. Algorithms that find good
partitionings over unstructured meshes are critical for efficient execution. In this work we
have used the widely known Metis package (Karypis and Kumar 1998) to perform this
task.

 The present paper is organized as follows. Sections 2 and 3 present the governing
equations and the SUPG/PSPG finite element formulation. Section 4 introduces the

inexact Newton-type schemes under consideration. Section 5 describes some issues related
to our parallel implementation. Performance studies for the three-dimensional leaky
driven cavity flow at Reynolds 400 test problem in different meshes and PC clusters are
presented in Section 5 and the paper ends with a summary of our main conclusions.

2 GOVERNING EQUATIONS

Let Ω ⊂ sdn be the spatial domain, where nsd is the number of space dimensions. Let Γ
denote the boundary of Ω . We consider the following velocity-pressure formulation of the
Navier-Stokes equations governing steady incompressible flows:

()ρ ⋅ − − ⋅∇ ∇ σ = 0 onu u f Ω (1)
⋅ Ω ∇ = 0 onu (2)

where ρ and u are the density and velocity, σ is the stress tensor given as

()σ = − Ι +p, pu T,
 (3)

where p is the hydrostatic pressure, I is the identity tensor and T is the deviatoric stress
tensor.

 The relationship between the stress tensor and deformation rate for Newtonian
fluids is defined by a proportionality constant that represents the momentum diffusion
experienced by the fluid. Therefore, the deviatoric stress tensor in equation (3) can be
expressed by

()µΤ = 2 ε u
 (4)

where µ is the proportionality constant known as dynamic viscosity and is deformation
rate tensor or

ε

() ()⎡ ⎤+⎣ ⎦
1
2ε = ∇ ∇ Tu u u

(5)

 The essential and natural boundary conditions associated with equations (1) and
(2) can be imposed at different portions of the boundary Γ and represented by,

Γ= on gu g
 (6)

⋅ Γσ = on hn h (7)

where Γg and Γ are complementary subsets of h Γ .

3 FINITE ELEMENT FORMULATION

Let us assume following Tezduyar (1991) that we have some suitably defined finite-

dimensional trial solution and test function spaces for velocity and pressure, hSu , , hVu
h
pS

and =h h
p pV S . The finite element formulation of equations (1) and (2) using SUPG and

PSPG stabilizations for incompressible fluid flows can be written as follows: find
 ∈h Suu h hand ∈h

pp S such that and ∀ ∈∀ ∈h Vuw h h h
pq V :

() () ()ρ
Ω Ω Γ Ω

⋅ ⋅ − Ω + Ω − ⋅ Γ + ⋅∫ ∫ ∫ ∫∇ ε σ ∇h h h h h h h h h:d p , d hd qw u u f w u w u Ωd

() ()

() ()

τ ρ

τ ρ ρ
ρ

= Ω

= Ω

⎡ ⎤+ ⋅ ⋅ ⋅ − ⋅ −⎣ ⎦

⎡ ⎤+ ⋅ ⋅ − ⋅ −⎣ ⎦

∑ ∫

∑ ∫

1

1

1
0

el

el

n
h h h h h h

SUPG
e

n
h h h h h

PSPG
e

ρ Ω

Ω =

p , d

q p ,

u w u u u f

u u u f

∇ ∇ ∇ σ

∇ ∇ ∇ σ d

(8)

 In the above equation the first four integrals on the left hand side represent terms
that appear in the Galerkin formulation of the problem (1)-(7), while the remaining
integral expressions represent the additional terms which arise in the stabilized finite
element formulation of the problem. Note that the stabilization terms are evaluated as the
sum of element-wise integral expressions. The first summation corresponds to the SUPG
(Streamline Upwind Petrov/Galerkin) term and the second correspond to the PSPG
(Pressure Stabilization Petrov/Galerkin) term. We have calculated the stabilization
parameters as described in Tezduyar (1991).

 The spatial discretization of equation (8) leads to the following system of nonlinear
equations,

() () ()δ δ+ + − + = uN u N u Ku G G fp

()ϕ ϕ+ + =TG u N u G fpp
(9)

where is the vector of unknown nodal values of and u hu p is the vector of unknown

nodal values of ph . The non-linear vectors ()N u , ()δN u , and the matrices

, ,

()ϕN u

K G δG , and ϕG emanate, respectively, from the convective, viscous and pressure

terms. The vectors and are due to the boundary conditions (6) and (7). The

subscripts
uf pf

δ and ϕ identify the SUPG and PSPG contributions respectively. In order to

simplify the notation we denote by ()= p,x u a vector of nodal variables comprising both

nodal velocities and pressures. Thus, equation (9) can be written as,

() =F x 0 (10)

where represents a nonlinear vector function. ()F x

 For Reynolds numbers much greater than unity, the nonlinear character of the
equations becomes dominant, making the choice of the solution algorithm, especially with
respect to its convergence and efficiency a key issue. The search for a suitable nonlinear
solution method is complicated by the existence of several procedures and their variants.
In the following section we present the nonlinear solution strategies based on the Newton-
type methods evaluated in this work.

4 NONLINEAR SOLUTION PROCEDURES

Consider the nonlinear problem arising from the discretization of the fluid flow equations

described by equation (10). We assume that is continuously differentiable in F sdn and

denote its Jacobian matrix by ∈ sdn'F . The Newton’s method is a classical algorithm for
solving equation (10) and can be enunciated as: given an initial guess , we compute a

sequence of steps and iterates as follows:
0x

ks kx

ALGORITHM N
for step 1 until convergence do = 0k
 solve () ()= −k k k'F x s F x (11)

 set + = +1k kx x ks

 Newton’s method is attractive because it converges rapidly from any sufficiently
good initial guess (see Dembo 1982). However, one drawback of Newton’s method is the
need to solve the Newton equations (11) at each stage. Computing the exact solution using
a direct method can be expensive if the number of unknowns is large and may not be
justified when is far from a solution. Thus, one might prefer to compute some

approximate solution, leading to the following algorithm:
kx

ALGORITHM IN
for step 1 until convergence do = 0k
 find some)η ⎡∈ ⎣0 1k , AND that satisfy ks

 () () ()η+ ≤k k k k'F x F x s F xk

ks

 (12)

 set + = +1k kx x

 For some , where)η ⎡∈ ⎣0 1k , • is a norm of choice. This formulation naturally

allows the use of an iterative solver: one first chooses ηk and then applies the iterative

solver to (11) until a is determined for which the residual norm satisfies (12). In this

context
ks

ηk is often called a forcing term, since its role is to force the residual of (11) to be

suitably small. This term can be specified in several ways and we have followed the
approach described in Eisenstat and Walker 1996 to enhance efficiency and convergence.
We have adopted 0 99max .η = arbitrarily in our tests. We have used a parallel nodal block-

diagonal preconditioned element-by-element (EBE) GMRES method to compute such

as equation (11) holds. A particularly simple scheme for solving the nonlinear system of
equations (10) is a fixed point iteration procedure known as successive substitution (SS)
(also known as Picard iteration, functional iteration or successive iteration). Note in the
algorithms above that, if we do not build the Jacobian matrix in equations (11) and (12),
and the solution of previous iterations were used, we have a successive substitution (SS)
method. In this work, we have evaluated the efficiency of Newton and successive
substitution methods in their inexact versions. We may also define a mixed strategy
combining SS and N (or ISS and IN) iterations, to improve performance, as described in
Elias et al (2003).

ks

 To form the Jacobian required by Newton-type methods we use a numerical
approximation described in Tezduyar (1999). Consider the following Taylor expansion for
the nonlinear convective term emanating from the Galerkin formulation:

'F

() () ∂
+ = + +

∂
∆ ∆ ...

N
N u u N u u

u
 (13)

where is the velocity increment. Discarding the high order terms and omitting the
integral symbols we arrive to the following approximation,

∆u

() () ()

() ()

ρ ρ

ρ ρ

+ ⋅ + ≅ ⋅

+ ⋅ + ⋅

u u u u u u

u u u

∆ ∇ ∆ ∇

∇ ∆ ∆ ∇ u
 (14)

 Note that the first term in the right hand side of equation (11) is the corresponding
residual vector and the remaining terms represent the numerical approximation of ∂

∂
N

u .

If we apply similar derivations to ()δN u and ()ϕN u we arrive to the SUPG and PSPG

contributions to the residual vector and to the approximations of δ∂
∂

N
u and ϕ∂

∂
N

u .

5 PARALLEL IMPLEMENTATION

The formulation presented in the previous sections was implemented using the message
passing parallel model with the MPI standard. Thus, we need to partition the global mesh
into minor pieces or non-overlapped sub-domains. The data communication must be
restricted to only the equations associated with interface nodes, as shown in Figure 1.
Thus, it is desirable an algorithm able to perform mesh partitioning minimizing the
number of interface nodes and making a good load balance among processes with
partitions distributed equally or according to the computational system. In this work we
have used the METIS_PartMeshDual routine provided by Metis package (Karypis and
Kumar 1998) to accomplish this task.

Other important optimizations are avoiding indirect memory addressing and IF
clauses. This can be achieved by performing a mesh reordering after the domain
decomposition. We have done these tasks in a preprocessing level where nodes are
renumbered according to its partitions and the number of interface nodes, and elements
are renumbered by their partitions. The main tasks developed in the preprocessor level
are summarized in Figure 1.

1

2
3

4

11

98

6

5

7
1

12 11

10

8

6
7

2

4

3
5

9
10

1

2

3

4

11

98

6

5

7
1

12 11

10

8

67

2

4

3
5

9
10

2

9

6

5

1

4

1

2

3

72

6

5

3
2

1 3

4

4

55

6

6

2
1

3
4

5

8

7

6

partition 1

partition 2

partition 1

Original Mesh

partition 2

After Metis

After preprocessing

Figure 1 – Domain decomposition and mesh reordering.

Note in Figure 1 that elements, internal and interface nodes are re-defined into sequential
ranges at each partition. Elements are reordered according to the number of nodes at the
interfaces in a hierarchical manner. Thus, any data can be easily distributed and managed
over distributed systems such as PC clusters, avoiding indirect addressing and IF
sentences. Data distribution can also take advantage of element-by-element (EBE) storage
scheme, where the unassembled stiffness matrix is stored at element level.

 Most of the computational effort spent in iterative solution of linear systems is due
to evaluations of matrix-vector products, or simply matvec operations. In our tests matvec
operations achieved 92% of the total computational costs. In EBE storage this task is
parallelizable by performing matvec operations at each partition level, then collecting the
contribution of interface equations by calling MPI_AllReduce routine. The P-EBE MAT-
VEC (Parallel Element by Element Matrix-Vector) scheme between two processes is shown
in Figure 2.

×

×

P1

P2

P2

INT

P1

INT

=

= P2

INT

P1

INT

INT

INT

MPI_AllReduce

P2

INT

P1

INT

Figure 2 – MPI Parallel Element-by-Element Matrix-Vector operation.

Note in Figure 2 that the communication region is restricted to only the interface
equations. Other vector-vector computations needed by the iterative linear solver are
accomplished with BLAS level 1 routines slightly modified to take into account message
passing parallelism. Figure 3 shows an example of BLAS ddot routine modified to support
parallelism with message passing. Note that others BLAS level 1 routines such as dscal,
daxpy, dcopy and dclear do not require any communication. These routines are
performed at partition and interface levels individually.

×

×

Partition 1

ddot_p2

ddot_p1

ddot_int

ddot_int

=

=

MPI_AllReduce

ddot_p1
+

ddot_p2

ddot_p1
+

ddot_p2

ddot_int

ddot_int

p-ddot = ddot_p1 + ddot_p2 + ddot_int

p-ddot = ddot_p1 + ddot_p2 + ddot_int

(scalar value)

(scalar value)

(scalar value)

(scalar value)

Partition 2

Interface

Interface

Figure 3 – P-ddot – Parallel dot product with message passing and BLAS level 1.

Note in Figure 3 that in p-ddot routine the communication is restricted to only scalar
numbers due the partial dot products performed at each partition with the conventional
BLAS ddot routine.

6 RESULTS

In this work we employed the three-dimensional leaky lid driven cavity flow as
benchmark. The numerical procedure considers a coupled u-p version for the stabilized
formulation using linear tetrahedron elements. The parallel-GMRES(25) linear solver
with nodal block diagonal preconditioner is employed as the inner iterative driver and the
computations were performed until the maximum residual and relative error decreased 3
orders of magnitude.

The computations have been performed on the Infoserver Itautec PC Cluster (16
nodes dual Intel Pentium III - 1 GHz, 512 Mb of memory per node, interconnected by
Gigabit network, Intel Fortran compiler, LAM-MPI and platform Red Hat Linux 7.3).
Some tests of code portability were performed on a mini-cluster fast-ethernet/wireless
composed by 4 laptop nodes with Intel Centrino processors and running Microsoft
Windows 2000/XP platform. All hardware is located at Center for Parallel Computations
of the COPPE/UFRJ.

The classical problem of the closed cavity driven by the motion of a leaky lid has
been used rather extensively as a validation test case by many authors (see Ghia et al,
1982 for details). In this problem a unit velocity is specified along the entire top surface
and zero velocity on the other surfaces as shown in Figure 4.

z

x y

Figure 4 – Flow in a leaky lid-driven cavity. Geometry and boundary conditions.

Tests were performed considering two meshes with 31 and 51 divisions along the edges of
the cavity. Figure 5 shows examples of these meshes decomposed by Metis. Reynolds
number of 400 was considered for all tests and details about the meshes can be accessed in
Table 1.

Table 1. Problem dimensions

 31x31x31 51x51x51

Elements 148,955 663,255

Nodes 32,768 140,608

Equations 117,367 525,556

Figure 5 – Meshes partitioned by Metis (Left) 31x31x31 with 16 partitions and (right)
51x51x51 with 8 partitions.

Figure 6 shows the velocity and pressure fields. We can note the vortex formation and the
pressure singularities at the cavity corners, typical of this problem. In Figures 7 and 8 the
inexact Newton-type methods are compared for the meshes employed. Figure 7 (left)
shows the adapted linear tolerances selected by the inexact solver as described in Section
4.

Figure 6 – Results for the leaky lid cavity flow Reynolds 400
(left) Velocity (right) pressure fields

Figure 7 (right) shows the cumulative time spent at the nonlinear solvers as the
nonlinear iterations progress. In Figure 8 we have a comparison between the nonlinear
inexact methods studied.

Nonlinear iteration

0 10 20 30 40

G
M

R
E

S(
25

)
to

le
ra

n
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Picard_31x31x31
Newton_31x31x31
Picard_51x51x51
Newton_51x51x51

 Nonlinear iteration

0 10 20 30 40

C
um

ul
at

iv
e

T
im

e
(s

ec
)

0

500

1000

1500

2000

2500

3000

Picard_31x31x31
Newton_31x31x31
Picard_51x51x51
Newton_51x51x51

Figure 7 – (left) Adaptative GMRES(25) tolerance due Inexact nonlinear solution –
(right) Cumulative time solution.

Note in Figures 7 (left) and 8 that both nonlinear inexact methods were able to achieve
convergent solutions and that was not necessary linear tolerances bellow 0.16. Figure 7
(right) shows that the inexact Newton method was faster than Picard iterations only for
the most refined mesh, but in all tests the inexact Newton solution required less nonlinear
iterations. We can note comparing Figures 7 (left and right) and 8 that the inexact
nonlinear methods try to adjust the inner linear solver tolerance to the nonlinear
convergence. Thus, the linear tolerance tightening is directly related to the relative
nonlinear residual decreasing.

Nonlinear iteration

0 10 20 30 40

lo
g 10

(|
|r

||
/|

|r
0|

|)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Picard_31x31x31
Newton_31x31x31
Picard_51x51x51
Newton_51x51x51

Figure 8 – Relative nonlinear residual – convergence of inexact Newton and Picard
methods

Figures 9 and 10 show the parallel performance results. In Figure 9 (left and right) are
shown the time spent for the Inexact Picard solution and the ratio of interface equations
to the total number of equations for both meshes. In Figure 10 (left and right) are
presented the parallel speedups and memory requirements.

9
9
3
.
7
8

5
0
1
.
2
2

2
7
8
.
2
5

2
0
0
.
0
8

1
6
5
.
0
1

1
5
0
.
2
6

1
4
1
.
3
1

1
3
1
.
5
3

1
3
0
.
0
0

2
6
3
7
.
2
5

1
6
8
6
.
9
0

1
3
7
4
.
2
1

1
2
1
9
.
2
1

1
1
1
0
.
9
9

1
0
3
0
.
2
2

9
8
0
.
1
7

0.00

250.00

500.00

750.00

1000.00

1250.00

1500.00

1750.00

2000.00

2250.00

2500.00

2750.00

3000.00

1 2 4 6 8 10 12 14 16

Number of Cluster Nodes

T
im

e
(s

ec
)

Cav3D 31x31x31
Cav3D 51x51x51

0
.
0
0

3
.
2
8

6
.
1
4

7
.
4
9 8
.
7
0

1
0
.
2
5 1
1
.
7
4

1
2
.
4
3

1
3
.
2
7

0
.
0
0

1
.
9
5

3
.
8
0 4
.
8
9

5
.
4
6 6
.
4
8 7
.
3
7

7
.
8
1

8
.
3
8

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4 6 8 10 12 14 16

Number of Cluster Nodes

P
er

ce
n

tu
a

l
of

 I
n

te
rf

ac
e

E
q

u
at

io
n

s
(%

)

Cav3D 31x31x31
Cav3D 51x51x51

Figure 9 – (left) Solution time and (right) Percentage of interface equations

We can note comparing Figure 9 left and right that increasing the number of processing
nodes the solution was faster. The speedup curve in Figure 10 shows that the larger model
(51x51x51) took more advantage of the parallel inexact algorithm than the smaller one
(31x31x31). The dashed column in Figures 9 and 10 (right) means that the problem could
not be fitted in the memory available in each cluster node (512 Mb). Thus, these cases
were not run. Most of the memory spent by the solution algorithm is due to the EBE
matrices storage, but the parallel data distribution diminishes this memory overhead. The
parallel data distribution associated with matrix-free techniques, such as described in
Knoll and Keyes (2004), could make possible to solve large scale problems even with few
processing nodes and less memory requirements.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Number of Cluster Nodes

S
p

ee
d

u
p

IDEAL
Cav3D 31x31x31
Cav3D 51x51x51

3
5
3

1
9
1

1
1
0

8
4

6
9

6
1

5
7

5
3

5
0

1
5
7
4

8
5
2

4
9
1

3
7
4

3
1
5

2
7
2

2
5
3

2
3
9

2
2
3

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 6 8 10 12 14 16

Number of Cluster Nodes

M
em

or
y

R
eq

u
ir

em
en

ts
 (

M
b

)

Cav3D 31x31x31
Cav3D 51x51x51

Figure 10 – (left) Speedup and (right) Memory requirements.

Figure 11 shows the results of tests performed on a mini-cluster formed by 4 laptops and a
wireless/fast-ethernet network (2 Intel Centrino 1.6 GHz/512Mb, 1 Intel Centrino
1.3/512Mb GHz and 1 Intel Pentium 4 2.4 GHz/512Mb interconnected by a Linksys
Wireless-B Hub, IEEE 802.11b/2.4 GHz/11Mbps or Fast-Ethernet 10/100Mbps network).
These tests show the versatility and portability that message passing codes can offer,
making possible the solution of even large scale problems employing modest machines.

3
9
8
.
6
6

5
2
3
.
0
2

2
3
1
4
.
9
1

3
9
8
.
6
6

1
7
8
.
6
9

1
5
4
.
5
2

0.00

250.00

500.00

750.00

1000.00

1250.00

1500.00

1750.00

2000.00

2250.00

2500.00

2750.00

3000.00

1 2 4

Number of Cluster Nodes

T
im

e
(s

ec
)

WIRELESS
FAST-ETHERNET

Figure 11 – (Left) Minicluster mobile wireless/fast-ethernet, (Right) Performance
comparison between wireless and fast-ethernet networks.

Figure 11 (right) shows that the wireless technology employed (wireless-b) was not able to
deliver the bandwidth required to reach a desirable speedup in this irregular MPI parallel
computation. However, with the increasing bandwidth in wireless technology mobile-
parallel computations will be a reality in the near future. The low speedups achieved in
the minicluster with fast-ethernet network was also due to the small problem size, as
occurred in the case shown in Figure 10 (left) for the Infoserver Itautec PC cluster.

7 CONCLUSIONS

We have tested the performance of inexact Newton-type algorithms to solve nonlinear
systems of equations arising from the SUPG/PSPG finite element formulation of steady
incompressible flows. We employed a numerically approximated Jacobian based on
Taylor’s expansion of the nonlinear convective terms emanating from the Galerkin and
stabilization terms. We also introduced an inexact Picard scheme. Numerical tests in a 3D
benchmark problem have shown the good parallel performance of the inexact Newton-
type methods. The code is portable across different computer platforms, ranging from a
mini-cluster with a fast-ethernet/wireless network composed by 4 laptop nodes to the
Infoserver Itautec PC Cluster with 16 nodes dual Intel Pentium III - 1 GHz, 512 Mb of
memory per node, interconnected by Gigabit network.

Acknowledgements

The authors would like to thank the financial support of the Petroleum National Agency
(ANP, Brazil) and MCT/CNPq, The Brazilian Council for Scientific Research. The Center
for Parallel Computations (NACAD) and Laboratory of Computational Methods in
Engineering (LAMCE) at the Federal University of Rio de Janeiro provided the
computational resources for this research.

REFERENCES

Brooks, A. N. and Hughes, T. J. R., 1982, Streamline Upwind/Petrov-Galerkin
Formulations for Convection Dominated Flows with Particular Emphasis on the
Incompressible Navier-Stokes Equation, Comput. Methods Appl. Mech. Engrg. 32:

199-259.

Dembo, R. S., Eisenstat, S. C. and Steihaug, T., 1982, Inexact Newton Methods, SIAM

J. Numer. Anal., 19: 400-408.

Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L. and White, A.,

2002, Sourcebook of Parallel Computing, Morgan Kaufmann, San Francisco, USA.

Eisenstat, S. C. and Walker, H. F., 1996, Choosing the Forcing Terms in Inexact

Newton Method, SIAM. J. Sci. Comput. 17–1: 16–32.

Elias, R. N., Coutinho, 2003, Inexact Newton-Type Methods for Non-Linear Problems

Arising from the SUPG/PSPG Solution of Steady Incompressible Navier-Stokes
Equations, M. Sc. thesis, Federal University of Rio de Janeiro, Brazil.

 (http://www.nacad.ufrj.br/~rnelias)

Ghia, U., Ghia, K. N. and Shin, C. T., 1982, High-Resolution for Incompressible Flow

Using the Navier-Stokes Equations and Multigrid Method. J. Comp. Phys., 48:
387-411.

Hughes, T. J. R., Franca, L. P. and Balestra, M., 1986, A New Finite Element

Formulation for Computational Fluid Dynamics: V. Circumventing the Babuška-
Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem
Accommodating Equal-Order Interpolations, Comput. Methods Appl. Mech.
Engrg., 59: 85-99.

Karypis G. and Kumar V., 1998, Metis 4.0: Unstructured Graph Partitioning and

Sparse Matrix Ordering System. Technical report, Department of Computer
Science, University of Minnesota, Minneapolis;

 (http://www.users.cs.umn.edu/~karypis/metis).

Kelley, C. T., 1995, Iterative Methods for Linear and Nonlinear Equations, Frontiers in

applied mathematics, SIAM, Philadelphia.

Knoll, D. A. and Keyes, D. E., 2004, Jacobian-free Newton-Krylov Methods: a Survey of

Approaches and Applications, Journal o f Computation Physics 193: 357-397.

Tezduyar, T. E., 1991, Stabilized Finite Element Formulations for Incompressible Flow

Computations, Advances in Applied Mechanics, 28: 1-44.

Tezduyar, T. E., 1999, Finite Elements in Fluids: Lecture Notes of the Short Course on

Finite Elements in Fluids, Computational Mechanics Division – Vol. 99-77, Japan
Society of Mechanical Engineers, Tokyo, Japan.

Tezduyar, T. E., Mittal S., Ray S. E. and Shin R., 1992, Incompressible Flow

Computations with Stabilized Bilinear and Linear Equal-Order-interpolation
Velocity-pressure Elements, Comput. Methods Appl. Mech. Engrg. 95: 221-242.

	INTRODUCTION
	GOVERNING EQUATIONS
	FINITE ELEMENT FORMULATION
	NONLINEAR SOLUTION PROCEDURES
	PARALLEL IMPLEMENTATION
	RESULTS
	CONCLUSIONS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

