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Abstract. The finite element discretization of the three-dimensional incompressible 
Navier-Stokes yields a non-linear problem due the convective terms in the momentum 
equation. In this work we describe a parallel MPI-based implementation for PC clusters of 
inexact Newton-type schemes associated to the SUPG/PSPG stabilized finite element 
formulation of steady incompressible flows. The resulting linear systems of equations are 
solved iteratively by an element-by-element preconditioned GMRES solver. Performance 
of the parallel iterative solver and the nonlinear strategy is evaluated by numerical tests 
in a benchmark problem.  
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1 INTRODUCTION 
 
The finite element computation of incompressible Newtonian flows involves two sources of 
potential numerical instabilities associated with the Galerkin formulation of the problem. 
One source is due to the presence of convective terms in the governing equations. The 
other source is due to using inappropriate combinations of interpolation functions to 
represent the velocity and pressure fields. These instabilities are frequently prevented by 
addition of stabilization terms into the Galerkin formulation.  
 
 In this work we consider the stabilized finite element formulation proposed by 
Tezduyar (1991) applied to solve steady Newtonian incompressible flows. This 
formulation allows that equal-order-interpolation velocity-pressure elements are 
employed, circumventing the Babuska-Brezzi stability condition by introducing two 
stabilization terms. The first term is the Streamline Upwind Petrov-Galerkin (SUPG) 
introduced by Brooks and Hughes (1982) and the other one is the Pressure Stabilizing 



Petrov Galerkin (PSPG) stabilization proposed initially by Hughes et al (1986) for Stokes 
flows and generalized by Tezduyar et al (1992) to high Reynolds number flows. 
 
 The discretization of the incompressible Navier-Stokes equations gives rise to a 
system of nonlinear algebraic equations due the presence of convective terms in the 
momentum equation. Among several strategies to solve nonlinear problems the Newton’s 
methods is attractive because it converges rapidly from any sufficient good initial guess 
(Dembo et al., 1982). However, the implementation of Newton’s method involves some 
considerations: Newton’s method requires the solution of linear systems at each stage and 
exact solutions can be too expensive if the number of unknowns is large. In addition, the 
computational effort spent to find exact solutions may not be justified when the nonlinear 
iterates are far from the solution. Therefore, it seems reasonable to use an iterative 
method, such GMRES, to solve these linear systems only approximately.  
 
 The inexact-Newton method associated with iterative Krylov solvers have been 
used to reduce computational efforts related to non-linearities in many problems of 
computational fluid dynamics, offering a trade-off between the accuracy and the amount 
of computational effort spent per iteration. According to Kelley (1995) its success depends 
on some factors, such as: quality of initial Newton step, robustness of Jacobian evaluation 
and proper forcing function choice. 
 
 Many authors have proposed combinations between stabilized finite element 
formulations and algorithms to solve the nonlinear problems arising from non-Newtonian 
incompressible flow simulations. Some of these strategies employ analytical or directional 
forms of Jacobians in the Newton method. The analytical derivative of the stabilization 
terms are often difficult to evaluate. In this work we have tested the performance of the 
approximate Jacobian form described by Tezduyar (1999). This numerically approximated 
Jacobian is based in Taylor’s expansions of the nonlinear terms and presents an 
alternative and simple way to implement the tangent matrix employed by inexact Newton-
type methods. 
 

Three-dimensional non-linear finite element computations can yield linear systems 
of thousands and sometimes billions of equations. Several different approaches for 
designing and implementing parallel programs have been developed to solve such 
problems. However, two dominant alternatives have emerged: message passing and 
multithreading. According to Dongarra et al (2002) message passing is by far the most 
widely used approach to parallel computing, at least on large parallel systems. In the 
message-passing model, a computation comprises one or more processes that communicate 
by calling library routines to send and receive messages. There are several library-based 
implementations to provide these inter-processes communications, such as, Message 
Passing Interface (MPI) and Parallel Virtual Machine (PVM). In this work we have used 
the MPI standard. The message passing model has the advantages that programs become 
highly portable and the programmer has explicit control over the memory used by each 
process (Dongarra et al 2002). A crucial task when developing a message passing parallel 
program is to decompose the global domain into pieces, or partitions, which can be run in 
parallel with minimal communication and good load balance. Algorithms that find good 
partitionings over unstructured meshes are critical for efficient execution. In this work we 
have used the widely known Metis package (Karypis and Kumar 1998) to perform this 
task. 

 
 The present paper is organized as follows. Sections 2 and 3 present the governing 
equations and the SUPG/PSPG finite element formulation. Section 4 introduces the 



inexact Newton-type schemes under consideration. Section 5 describes some issues related 
to our parallel implementation. Performance studies for the three-dimensional leaky 
driven cavity flow at Reynolds 400 test problem in different meshes and PC clusters are 
presented in Section 5 and the paper ends with a summary of our main conclusions. 
 

2 GOVERNING EQUATIONS  
 

Let Ω ⊂ sdn  be the spatial domain, where nsd is the number of space dimensions. Let Γ  
denote the boundary of Ω . We consider the following velocity-pressure formulation of the 
Navier-Stokes equations governing steady incompressible flows: 
 

( )ρ ⋅ − − ⋅∇ ∇ σ = 0 onu u f Ω  (1)
⋅ Ω ∇ = 0                   onu  (2)

 
where ρ  and u  are the density and velocity, σ  is the stress tensor given as 
 

( )σ = − Ι +p, pu T,
 (3)

 
where p  is the hydrostatic pressure, I is the identity tensor and T is the deviatoric stress 
tensor. 
  
 The relationship between the stress tensor and deformation rate for Newtonian 
fluids is defined by a proportionality constant that represents the momentum diffusion 
experienced by the fluid. Therefore, the deviatoric stress tensor in equation (3) can be 
expressed by 
 

( )µΤ = 2 ε u
 (4)

 
where µ  is the proportionality constant known as dynamic viscosity and  is deformation 
rate tensor or 

ε

 

( ) ( )⎡ ⎤+⎣ ⎦
1
2ε = ∇ ∇ Tu u u

 
(5)

 
 The essential and natural boundary conditions associated with equations (1) and 
(2) can be imposed at different portions of the boundary Γ  and represented by, 
 

Γ= on gu g
 (6)

⋅ Γσ = on hn h  (7)
 
where Γg  and Γ  are complementary subsets of h Γ . 

 

3 FINITE ELEMENT FORMULATION 
 
Let us assume following Tezduyar (1991) that we have some suitably defined finite-

dimensional trial solution and test function spaces for velocity and pressure, hSu , , hVu
h
pS  



and =h h
p pV S . The finite element formulation of equations (1) and (2) using SUPG and 

PSPG stabilizations for incompressible fluid flows can be written as follows: find  
 ∈h Suu h hand ∈h

pp S  such that   and ∀ ∈∀ ∈h Vuw h h h
pq V : 
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(8)
 

 
 In the above equation the first four integrals on the left hand side represent terms 
that appear in the Galerkin formulation of the problem (1)-(7), while the remaining 
integral expressions represent the additional terms which arise in the stabilized finite 
element formulation of the problem. Note that the stabilization terms are evaluated as the 
sum of element-wise integral expressions. The first summation corresponds to the SUPG 
(Streamline Upwind Petrov/Galerkin) term and the second correspond to the PSPG 
(Pressure Stabilization Petrov/Galerkin) term. We have calculated the stabilization 
parameters as described in Tezduyar (1991). 
 
 The spatial discretization of equation (8) leads to the following system of nonlinear 
equations, 
 

( ) ( ) ( )δ δ+ + − + = uN u N u Ku G G fp

( )ϕ ϕ+ + =TG u N u G fpp
(9)

 

where  is the vector of unknown nodal values of  and u hu p  is the vector of unknown 

nodal values of ph . The non-linear vectors ( )N u , ( )δN u , and  the matrices 

, , 

( )ϕN u

K G δG , and ϕG  emanate, respectively, from the convective, viscous and pressure 

terms. The vectors  and  are due to the boundary conditions (6) and (7). The 

subscripts 
uf pf

δ  and ϕ  identify the SUPG and PSPG contributions respectively. In order to 

simplify the notation we denote by ( )= p,x u  a vector of nodal variables comprising both 

nodal velocities and pressures. Thus, equation (9) can be written as, 
 

( ) =F x 0  (10)

 
where  represents a nonlinear vector function. ( )F x
 
 For Reynolds numbers much greater than unity, the nonlinear character of the 
equations becomes dominant, making the choice of the solution algorithm, especially with 
respect to its convergence and efficiency a key issue. The search for a suitable nonlinear 
solution method is complicated by the existence of several procedures and their variants. 
In the following section we present the nonlinear solution strategies based on the Newton-
type methods evaluated in this work. 



 

4 NONLINEAR SOLUTION PROCEDURES 
 
Consider the nonlinear problem arising from the discretization of the fluid flow equations 

described by equation (10). We assume that  is continuously differentiable in F sdn  and 

denote its Jacobian matrix by ∈ sdn'F . The Newton’s method is a classical algorithm for 
solving equation (10) and can be enunciated as: given an initial guess , we compute a 

sequence of steps  and iterates  as follows: 
0x

ks kx
 
ALGORITHM N
for  step 1  until convergence do = 0k
 solve  ( ) ( )= −k k k'F x s F x (11)

 set  + = +1k kx x ks
 
 Newton’s method is attractive because it converges rapidly from any sufficiently 
good initial guess (see Dembo 1982). However, one drawback of Newton’s method is the 
need to solve the Newton equations (11) at each stage. Computing the exact solution using 
a direct method can be expensive if the number of unknowns is large and may not be 
justified when  is far from a solution. Thus, one might prefer to compute some 

approximate solution, leading to the following algorithm: 
kx

 
ALGORITHM IN
for  step 1  until convergence do = 0k
 find some )η ⎡∈ ⎣0 1k ,  AND  that satisfy ks

  ( ) ( ) ( )η+ ≤k k k k'F x F x s F xk

ks

 (12)

  set  + = +1k kx x
 

 For some , where )η ⎡∈ ⎣0 1k , •  is a norm of choice. This formulation naturally 

allows the use of an iterative solver: one first chooses ηk  and then applies the iterative 

solver to (11) until a  is determined for which the residual norm satisfies (12). In this 

context 
ks

ηk  is often called a forcing term, since its role is to force the residual of (11) to be 

suitably small. This term can be specified in several ways and we have followed the 
approach described in Eisenstat and Walker 1996 to enhance efficiency and convergence. 
We have adopted 0 99max .η =  arbitrarily in our tests. We have used a parallel nodal block-

diagonal preconditioned element-by-element (EBE) GMRES method to compute  such 

as equation (11) holds. A particularly simple scheme for solving the nonlinear system of 
equations (10) is a fixed point iteration procedure known as successive substitution (SS) 
(also known as Picard iteration, functional iteration or successive iteration). Note in the 
algorithms above that, if we do not build the Jacobian matrix in equations (11) and (12), 
and the solution of previous iterations were used, we have a successive substitution (SS) 
method. In this work, we have evaluated the efficiency of Newton and successive 
substitution methods in their inexact versions. We may also define a mixed strategy 
combining SS and N (or ISS and IN) iterations, to improve performance, as described in 
Elias et al (2003).  

ks



 
 To form the Jacobian  required by Newton-type methods we use a numerical 
approximation described in Tezduyar (1999). Consider the following Taylor expansion for 
the nonlinear convective term emanating from the Galerkin formulation: 

'F

 

( ) ( ) ∂
+ = + +

∂
∆ ∆ ...

N
N u u N u u

u
 (13)

 
where  is the velocity increment. Discarding the high order terms and omitting the 
integral symbols we arrive to the following approximation, 

∆u

 
( ) ( ) ( )

( ) ( )

ρ ρ

ρ ρ

+ ⋅ + ≅ ⋅

+ ⋅ + ⋅

u u u u u u

u u u

∆ ∇ ∆ ∇

∇ ∆ ∆ ∇ u
 (14)

 
 Note that the first term in the right hand side of equation (11) is the corresponding 
residual vector and the remaining terms represent the numerical approximation of ∂

∂
N

u . 

If we apply similar derivations to ( )δN u  and ( )ϕN u  we arrive to the SUPG and PSPG 

contributions to the residual vector and to the approximations of δ∂
∂

N
u  and ϕ∂

∂
N

u . 

 

5 PARALLEL IMPLEMENTATION 
 
The formulation presented in the previous sections was implemented using the message 
passing parallel model with the MPI standard. Thus, we need to partition the global mesh 
into minor pieces or non-overlapped sub-domains. The data communication must be 
restricted to only the equations associated with interface nodes, as shown in Figure 1. 
Thus, it is desirable an algorithm able to perform mesh partitioning minimizing the 
number of interface nodes and making a good load balance among processes with 
partitions distributed equally or according to the computational system. In this work we 
have used the METIS_PartMeshDual routine provided by Metis package (Karypis and 
Kumar 1998) to accomplish this task.  
 

Other important optimizations are avoiding indirect memory addressing and IF 
clauses. This can be achieved by performing a mesh reordering after the domain 
decomposition. We have done these tasks in a preprocessing level where nodes are 
renumbered according to its partitions and the number of interface nodes, and elements 
are renumbered by their partitions. The main tasks developed in the preprocessor level 
are summarized in Figure 1.  
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Figure 1 – Domain decomposition and mesh reordering. 
 
Note in Figure 1 that elements, internal and interface nodes are re-defined into sequential 
ranges at each partition. Elements are reordered according to the number of nodes at the 
interfaces in a hierarchical manner. Thus, any data can be easily distributed and managed 
over distributed systems such as PC clusters, avoiding indirect addressing and IF 
sentences. Data distribution can also take advantage of element-by-element (EBE) storage 
scheme, where the unassembled stiffness matrix is stored at element level.  
 
 Most of the computational effort spent in iterative solution of linear systems is due 
to evaluations of matrix-vector products, or simply matvec operations. In our tests matvec 
operations achieved 92% of the total computational costs. In EBE storage this task is 
parallelizable by performing matvec operations at each partition level, then collecting the 
contribution of interface equations by calling MPI_AllReduce routine. The P-EBE MAT-
VEC (Parallel Element by Element Matrix-Vector) scheme between two processes is shown 
in Figure 2.  
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Figure 2 – MPI Parallel Element-by-Element Matrix-Vector operation. 
 
Note in Figure 2 that the communication region is restricted to only the interface 
equations. Other vector-vector computations needed by the iterative linear solver are 
accomplished with BLAS level 1 routines slightly modified to take into account message 
passing parallelism. Figure 3 shows an example of BLAS ddot routine modified to support 
parallelism with message passing. Note that others BLAS level 1 routines such as dscal, 
daxpy, dcopy and dclear do not require any communication. These routines are 
performed at partition and interface levels individually.  
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Figure 3 – P-ddot – Parallel dot product with message passing and BLAS level 1. 

 
Note in Figure 3 that in p-ddot routine the communication is restricted to only scalar 
numbers due the partial dot products performed at each partition with the conventional 
BLAS ddot routine.  
 



6 RESULTS 
 
In this work we employed the three-dimensional leaky lid driven cavity flow as 
benchmark. The numerical procedure considers a coupled u-p version for the stabilized 
formulation using linear tetrahedron elements. The parallel-GMRES(25) linear solver 
with nodal block diagonal preconditioner is employed as the inner iterative driver and the 
computations were performed until the maximum residual and relative error decreased 3 
orders of magnitude. 
 

The computations have been performed on the Infoserver Itautec PC Cluster (16 
nodes dual Intel Pentium III - 1 GHz, 512 Mb of memory per node, interconnected by 
Gigabit network, Intel Fortran compiler, LAM-MPI and platform Red Hat Linux 7.3). 
Some tests of code portability were performed on a mini-cluster fast-ethernet/wireless 
composed by 4 laptop nodes with Intel Centrino processors and running Microsoft 
Windows 2000/XP platform. All hardware is located at Center for Parallel Computations 
of the COPPE/UFRJ. 
 

The classical problem of the closed cavity driven by the motion of a leaky lid has 
been used rather extensively as a validation test case by many authors (see Ghia et al, 
1982 for details). In this problem a unit velocity is specified along the entire top surface 
and zero velocity on the other surfaces as shown in Figure 4. 
 

z

x y

 
 

Figure 4 – Flow in a leaky lid-driven cavity. Geometry and boundary conditions. 
 
Tests were performed considering two meshes with 31 and 51 divisions along the edges of 
the cavity. Figure 5 shows examples of these meshes decomposed by Metis. Reynolds 
number of 400 was considered for all tests and details about the meshes can be accessed in 
Table 1. 
 



Table 1. Problem dimensions 
 

 31x31x31 51x51x51 

Elements 148,955 663,255 

Nodes 32,768 140,608 

Equations 117,367 525,556 

 

 

 

 
   

Figure 5 – Meshes partitioned by Metis (Left) 31x31x31 with 16 partitions and (right) 
51x51x51 with 8 partitions. 

 
Figure 6 shows the velocity and pressure fields. We can note the vortex formation and the 
pressure singularities at the cavity corners, typical of this problem. In Figures 7 and 8 the 
inexact Newton-type methods are compared for the meshes employed. Figure 7 (left) 
shows the adapted linear tolerances selected by the inexact solver as described in Section 
4. 
 

  
  

Figure 6 – Results for the leaky lid cavity flow Reynolds 400  
(left) Velocity (right) pressure fields 

 



Figure 7 (right) shows the cumulative time spent at the nonlinear solvers as the 
nonlinear iterations progress. In Figure 8 we have a comparison between the nonlinear 
inexact methods studied. 
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Figure 7 – (left) Adaptative GMRES(25) tolerance due Inexact nonlinear solution –  
(right) Cumulative time solution. 

 
Note in Figures 7 (left) and 8 that both nonlinear inexact methods were able to achieve 
convergent solutions and that was not necessary linear tolerances bellow 0.16. Figure 7 
(right) shows that the inexact Newton method was faster than Picard iterations only for 
the most refined mesh, but in all tests the inexact Newton solution required less nonlinear 
iterations. We can note comparing Figures 7 (left and right) and 8 that the inexact 
nonlinear methods try to adjust the inner linear solver tolerance to the nonlinear 
convergence. Thus, the linear tolerance tightening is directly related to the relative 
nonlinear residual decreasing.  
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Figure 8 – Relative nonlinear residual – convergence of inexact Newton and Picard 
methods 

 
Figures 9 and 10 show the parallel performance results. In Figure 9 (left and right) are 
shown the time spent for the Inexact Picard solution and the ratio of interface equations 
to the total number of equations for both meshes. In Figure 10 (left and right) are 
presented the parallel speedups and memory requirements. 
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Figure 9 – (left) Solution time and (right) Percentage of interface equations 
 
We can note comparing Figure 9 left and right that increasing the number of processing 
nodes the solution was faster. The speedup curve in Figure 10 shows that the larger model 
(51x51x51) took more advantage of the parallel inexact algorithm than the smaller one 
(31x31x31). The dashed column in Figures 9 and 10 (right) means that the problem could 
not be fitted in the memory available in each cluster node (512 Mb). Thus, these cases 
were not run. Most of the memory spent by the solution algorithm is due to the EBE 
matrices storage, but the parallel data distribution diminishes this memory overhead. The 
parallel data distribution associated with matrix-free techniques, such as described in 
Knoll and Keyes (2004), could make possible to solve large scale problems even with few 
processing nodes and less memory requirements. 
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Figure 10 – (left) Speedup and (right) Memory requirements. 
 
Figure 11 shows the results of tests performed on a mini-cluster formed by 4 laptops and a 
wireless/fast-ethernet network (2 Intel Centrino 1.6 GHz/512Mb, 1 Intel Centrino 
1.3/512Mb GHz and 1 Intel Pentium 4 2.4 GHz/512Mb interconnected by a Linksys 
Wireless-B Hub, IEEE 802.11b/2.4 GHz/11Mbps or Fast-Ethernet 10/100Mbps network). 
These tests show the versatility and portability that message passing codes can offer, 
making possible the solution of even large scale problems employing modest machines. 
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Figure 11 – (Left) Minicluster mobile wireless/fast-ethernet, (Right) Performance 
comparison between wireless and fast-ethernet networks. 
 
Figure 11 (right) shows that the wireless technology employed (wireless-b) was not able to 
deliver the bandwidth required to reach a desirable speedup in this irregular MPI parallel 
computation. However, with the increasing bandwidth in wireless technology mobile-
parallel computations will be a reality in the near future. The low speedups achieved in 
the minicluster with fast-ethernet network was also due to the small problem size, as 
occurred in the case shown in Figure 10 (left) for the Infoserver Itautec PC cluster.  
 

7 CONCLUSIONS 
 
We have tested the performance of inexact Newton-type algorithms to solve nonlinear 
systems of equations arising from the SUPG/PSPG finite element formulation of steady 
incompressible flows. We employed a numerically approximated Jacobian based on 
Taylor’s expansion of the nonlinear convective terms emanating from the Galerkin and 
stabilization terms. We also introduced an inexact Picard scheme.  Numerical tests in a 3D 
benchmark problem have shown the good parallel performance of the inexact Newton-
type methods. The code is portable across different computer platforms, ranging from a 
mini-cluster with a fast-ethernet/wireless network composed by 4 laptop nodes to the 
Infoserver Itautec PC Cluster with 16 nodes dual Intel Pentium III - 1 GHz, 512 Mb of 
memory per node, interconnected by Gigabit network. 
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