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Abstract. The parallel edge-based SUPG/PSPG finite element formulation applied to 3D 
steady incompressible Navier-Stokes equations is presented. The highly coupled velocity-
pressure nonlinear system of equations is solved with an inexact Newton-like method. The 
locally linear system of equations originated by the inexact nonlinear method is solved with a 
nodal block diagonal preconditioned GMRES solver. Matrix-vector computations within the 
GMRES solver are computed edge-by-edge, diminishing floating point operations, and 
indirect memory addressing and memory requirements. The parallel implementation 
comprising message passing parallelism is addressed and the results for the three dimensional 
lid driven cavity flows and the laminar flow through a race car body are discussed. Results 
have shown that edge-based data structure is more efficient than traditional element-based 
schemes and the parallel inexact non-linear solver has shown good performance and 
robustness. 
 
Keywords. Edge-based data structure, Parallel finite elements, Inexact Newton methods, 
Navier-Stokes equations.  
 
1 INTRODUCTION 
 
We consider the simulation of steady incompressible fluid flow governed by Navier-Stokes 
equations using the stabilized finite element formulation as shown in Tezduyar (1991). This 
formulation allows that equal-order-interpolation velocity-pressure elements are employed by 
introducing two stabilization terms: the Streamline Upwind Petrov-Galerkin (SUPG) and the 
Pressure Stabilizing Petrov Galerkin stabilization (PSPG). 
 

When discretized, the incompressible Navier-Stokes equations give rise to a fully 
coupled velocity-pressure system of nonlinear equations due the presence of convective terms 
in momentum equation. The inexact Newton method (Dembo et al., 1982) associated with a 
proper preconditioned iterative Krylov solver, such as GMRES, presents an appropriated 
framework to solve nonlinear systems, offering a trade-off between accuracy and the amount 
of computational effort spent per iteration. 

 
 Element-based data structures have been extensively used in the implementation of 
iterative solvers. A wide class of preconditioners specially designed for element-by-element 
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(EBE) techniques can be found in literature (Ferencz and Hughes, 1998). This type of data 
structure, besides fully exploiting the sparsity of the system, is suitable for parallelization and 
vectorization, as matrix-vector (matvec) products can be written in the form of a single loop 
structure (Coutinho et al., 1991). Another way of writing an efficient code for matvec 
products is by using the Compressed Storage Row (CSR) format (Saad, 1996), in which only 
global nonzero coefficients are stored. In the CSR format, the algorithm for matrix-vector 
products requires a two-loop structure: an outer loop over the equations and an inner loop 
over each nonzero contribution. In comparison with EBE implementations, this format has the 
advantage of storing only global coefficients, but with the overhead of an inner loop that can 
not be unrolled, specially if unstructured meshes are to be considered. 
 
 Edge-based data structures or EDE for short can be viewed as a blend of EBE and 
CSR formats: only global nonzero coefficients are stored and the single loop structure is 
maintained. In the context of finite elements, this type of data structure has been used since 
the early 1990s. Peraire et al. (1993) and Lyra et al. (1995) used edge-based data structures to 
compute the nodal balance of fluxes for compressible flow. Luo et al. (1994) used an edge-
based approach in the development of an upwind finite element scheme for the solution of the 
Euler equations. Löhner (1994) showed different ways of grouping edges in the evaluation of 
residuals for the Laplacian operator, aiming to reduce the number i/a operations. More 
recently, Ribeiro et al. (2001) presented an edge-based implementation for stabilized semi-
discrete and space-time finite element formulations for shallow water equations. Other recent 
works on the subject include those of Coutinho et al. (2001), with applications to nonlinear 
solid mechanics, Catabriga and Coutinho (2002), for the implicit SUPG solution of the Euler 
equations, and Soto et al. (2004) for incompressible flow problems. It has been shown by 
Ribeiro and Coutinho (2005) that for unstructured grids composed by tetrahedra, edge-based 
data structures offer more advantages than CSR, particularly for problems involving many 
degrees of freedom. 
 

When dealing with large scale problems the use of parallel solvers is an essential 
condition and the use of an algorithm able to run efficiently in shared, distributed or hybrid 
memory systems has been a motivation for many researchers to turn the solver strategy more 
independent of the hardware resources.  
 

The present paper is organized as follows. Sections 2 present the SUPG/PSPG finite 
element formulation and nonlinear solution adopted. In section 3 we describe the edge-based 
data structure. Some parallel aspects are briefly introduced in section 4 and the last two 
sections present the results for two benchmarks problems considered and our final 
discussions. 
 
2 GOVERNING EQUATIONS  
 
Let Ω ⊂ sdn  be the spatial domain, where nsd is the number of space dimensions. Let Γ  
denote the boundary of . We consider the following velocity-pressure formulation of the 
Navier-Stokes equations governing steady incompressible flows: 

Ω

 
( )ρ ⋅ − − ⋅∇ ∇ σ = 0 onu u f Ω  (1)

⋅ Ω ∇ = 0                   onu  (2)
 
where ρ  and  are the density and velocity, u σ  is the stress tensor given as 
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 The essential and natural boundary conditions associated with equations (1) and (2) 
can be imposed at different portions of the boundary Γ  and represented by, 
 

Γ= on gu g  (3)
⋅ Γσ = on hn h  (4)

 
where Γg  and Γ  are complementary subsets of h Γ . 
 
Let us assume following Tezduyar (1991) that we have some suitably defined finite-
dimensional trial solution and test function spaces for velocity and pressure, , ,  and 

. The finite element formulation of equations 

hSu hVu h
pS

h
pV S= h

p
h

h h

d
Ω
∫

(1) and (2) using SUPG and PSPG 
stabilizations for incompressible fluid flows can be written as follows: Find   and 

 such that   and : 

h S∈ uu
h

pp S∈ h V∀ ∈ uw h h
pq V∀ ∈
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(5)
 
 In the above equation the first four integrals on the left hand side represent terms that 
appear in the Galerkin formulation of the problem (1)-(4), while the remaining integral 
expressions represent the additional terms which arise in the stabilized finite element 
formulation. Note that the stabilization terms are evaluated as the sum of element-wise 
integral expressions, where nel is the number of elements in the mesh. The first summation 
corresponds to the SUPG (Streamline Upwind Petrov/Galerkin) term and the second to the 
PSPG (Pressure Stabilization Petrov/Galerkin) term. We have calculated the stabilization 
parameters according to Tezduyar et al. (1992), as follows: 
 

( )

1 222

2# #

2 49
h

SUPG PSPG h h
ντ τ

−⎡ ⎤⎛ ⎞⎛ ⎞ ⎟⎢ ⎥⎜⎟⎜ ⎟⎜⎟= = +⎜ ⎟⎢ ⎥⎜⎟ ⎟⎜ ⎟⎜ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎜⎝ ⎠⎣ ⎦

u
 (6)

 
 Here uh is the local velocity vector, ν represent the kinematic viscosity and the “element 
length”  is defined to be equal to the diameter of the sphere which is volume-equivalent to 
the element. 

#h

 
 The spatial discretization of Eq. (11) leads to the following system of nonlinear 
equations, 
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( )( ) ( )

( )T

δ δ

ψ ψ

+ + − + =

+ + =

uN u N u Ku G G f

G u N u G f p

p

p
 (7)

 
where u is the vector of unknown nodal values of uh and p is the vector of unknown nodal 
values of ph. The non-linear vectors N(u), Nδ(u), Nψ(u), and the matrices K, G, Gδ, and Gψ 
emanate, respectively, from the convective, viscous and pressure terms. The vectors fu and fp 
are due to the boundary conditions (3) and (4). The subscripts δ and ψ identify the SUPG and 
PSPG contributions respectively. In order to simplify the notation we denote by x = (u, p) a 
vector of nodal variables comprising both nodal velocities and pressures. Thus, Eq. (7) can be 
written as, 
 

( ) =F x 0  (8)
 
where  represents a nonlinear vector function. ( )F x
 
 A particularly simple scheme for solving the nonlinear system of equations (8) is a fixed 
point iteration procedure known as the successive substitution, (also known as Picard 
iteration, functional iteration or successive iteration) which may be written as 
 

( )0 1k k+ = − kJ x x r  (9)
 
here the nonlinearity is evaluated at the known iterate xk where J0 is a first order 
approximation of the Jacobian  J(x), rk is the residual vector, and a non-symmetric linear 
system must be formed and solved at each iteration. Although the convergence rate of this 
scheme can be slow (its convergence rate is only asymptotically linear), the method converges 
for a fair range of Reynolds numbers. This, together with its simplicity of implementation and 
relativity insensitivity to the initial iterate x0, accounts for its popularity and recommends its 
use for the solution of a wide variety of problems. However, as observed by Elias et al (2004), 
the fully coupled Jacobian may be numerically approximated by a truncated Taylor 
expansion, reducing the number of nonlinear iterations. 
 
One drawback of nonlinear methods is the need to solve a local linear system (9) at each 
stage. Computing the exact solution using a direct method can be expensive if the number of 
unknowns is large and may not be justified when xk is far from a solution (Dembo et al., 
1982). Thus, one might prefer to compute some approximate solution, leading to the 
following algorithm: 
 
For  step 1 until convergence do 0k =
 Find some  AND  that satisfy [0,1kη ∈ ) ks
 ( )0 1k k k kη++ ≤r J x s rk

ks
 (10)

 update  1k k+ = +x x
 
for some ηk ∈ [0,1), where •  is a norm of choice. This formulation naturally allows the use 
of an iterative solver like GMRES or BiCGSTAB: one first chooses ηk and then applies the 
iterative solver to (9) until a sk is determined for which the residual norm satisfies (10). In this 
context ηk is often called the forcing term, since its role is to force the residual of (9) to be 
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suitably small. The forcing term can be specified in several ways (see, Eisenstat and Walker, 
1996 for details) and in this work the following definition was employed 
 

( ) ( )2 2
10.9 .k k kη −= F x F x  (11)

 
3 EDGE-BASED DATA STRUCTURE 
 
Edge-based finite element data structures have been introduced for explicit computations of 
compressible flow in unstructured grids composed by tetrahedra (Peraire et al. 1993; Luo and 
Löhner, 1994). It was observed in these works that residual computations with edge-based 
data structures were faster and required less memory than standard element-based residual 
evaluations. Following these ideas, Coutinho et al (2001) and Catabriga and Coutinho (2002) 
derived edge-based formulations respectively for elasto-plasticity and the SUPG formulation 
for inviscid compressible flows. They used the concept of disassembling the finite element 
matrices to build the edge matrices. For three dimensional viscoplastic flow problems on 
unstructured meshes, we may derive an edge-based finite element scheme by noting that the 
element matrices can be disassembled into their edge contributions as, 
 

1

m
e e

s
s=

=∑J T  (12)

 
where  is the contribution of edge s to Je and m is the number of element edges per 
element (six for tetrahedral). For instance, Figure 1 shows a tetrahedron and its edge 
disassembling into its six edges.  

e
sT

 
In Figure 1, each s

ijT  is a ndof × ndof sub-matrix, where ndof is the number of degrees of 
freedom (four for fully coupled incompressible fluid flow). The arrows represent the adopted 
edge orientation. Denoting by  E  the set of all elements sharing a given edge s, we may add 
their contributions, arriving to the edge matrix, 
 

e
s s

s∈
= ∑J T

E
 (13)

 
The resulting matrix for incompressible fluid flow is non-symmetric, preserving the structure 
of the edge matrices given in Figure 1. Thus, in principle we need to store two off-diagonal 
4×4 blocks and two 4×4 diagonal blocks per edge. As we shall see below this storage area can 
be reduced. 
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Edge matrix 2 
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⎢ ⎥
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⎢ ⎥⎣ ⎦

3 3
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Edge matrix 3 
 

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4 4
11 14

4

4 4
41 44

0 0
0 0 0 0
0 0 0 0

0 0

e

T T

T

T T

 

Edge matrix 4 

⎡ ⎤
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Edge matrix 5 
 

⎡ ⎤
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⎢ ⎥
⎢ ⎥
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6 6 6
33 34
6 6
43 44

0 0 0 0
0 0 0 0
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eT
T T
T T

 

Edge matrix 6 

Figure 1- Edge disassembling of a tetrahedral finite element for incompressible flow 
problems.  
 
When working with iterative solvers like GMRES, it is necessary to compute sparse matrix-
vector products at each iteration. A straightforward way to implement the edge-by-edge (or 
element-by-element) matrix-vector product is, 
 

1

ne
l l

l=
=∑Jp J p

l

 (14)

 
where ne is the total number of local structures (edges or elements) in the mesh and pl is the 
restriction of p to the edge or element degrees-of-freedom.  
Considering that we may add all the local nodal block diagonals in a global nodal block 
diagonal matrix and we may store only the off-diagonal blocks (by edges or elements), it is 
possible to improve the matrix-vector product (14) disregarding redundant nodal block 
diagonal coefficients for each local structure (Catabriga and Coutinho, 2002). This scheme is 
an extension of that proposed by Gijzen (1995) where is considered only the main diagonal 
instead of the nodal block diagonal. Thus, the matrix-vector product may be rewritten as 
 

1
( ) ( )

ne
l l

l=
⎡ ⎤= + −⎣ ⎦Jp B J p J B J pA  (15)
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where B(J) stores the nodal block diagonal of J and A is the assembling operator. In the 
above matrix-vector product the first sum involves only global quantities while the second is 
very similar to the standard matrix-vector product (14). Note that we need to store only the 
off-diagonal blocks associated to each structure (edge or element), thus reducing memory 
requirements. It is also important to observe that in the case of the edge-based matrix-vector 
product (15) only global coefficients are involved in the computations. The resulting 
algorithm is, 
 

For each local structure l  do: 
 Recover the global numbering of the local degrees of freedom. 
 Gathering operation:  l ←p p
 Perform product: ( )l l l l⎡ ⎤= − ⋅⎣ ⎦jp J B J p  

 Scattering and accumulation operations:  l← +jp jp jp
end for  l

( )= +jp B J p jp  
 
The B(J)p product performed at nodal level follows the same ideas described in the above 
algorithm (gather, local computations and scatter and accumulation). Considering the standard 
pointers, localization matrices and destination arrays of finite element implementations 
(Hughes, 1987) applied to edge data structures, it is easy to verify that pointers, localization 
matrices and destination arrays correspond to a two-node element, that is, an edge. In Table 1 
we compare the storage requirements to hold the coefficients of the element and edge 
matrices as well as the number of floating point (flop) and indirect addressing (i/a) operations 
for computing matrix-vector products (15) using element and edge-based data structures. 
 

Table 1. Memory to hold matrix coefficients and computational costs for element and edge-
based matrix-vector products for tetrahedral finite element meshes. 

 
Data structure Memory flop i/a 
Element 1056 nnodes 2112 nnodes 1408 nnodes 
Edge 224 nnodes 448 nnodes 448 nnodes 

 
All data in these tables are referred to nnodes, the number of nodes in the finite element mesh. 
According to Löhner (1994), the following estimates are valid for unstructured 3D grids, nel ≈ 
5.5×nnodes, nedges ≈ 7×nnodes. 
 
Clearly data in Table 1 favors the edge-based scheme. However, compared to the element 
data structure, the edge scheme does not present a good balance between flop and i/a 
operations. Minimizing indirect addressing and improving data locality are major concerns to 
achieve high performance on current processors. Löhner and Galle (2002) and Coutinho et al 
(2005) discuss several enhancements to the simple edge scheme introduced here, that mitigate 
the effects of indirect addressing and bad data locality. In the next section we describe the 
edge and node reordering techniques used here, which are less involved than those of 
Coutinho et al (2005).  
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4 PARALLEL IMPLEMENTATION 
 
The parallel inexact nonlinear solver presented in the previous section was implemented 
based in the message passing parallelism model (MPI). The original unstructured grid was 
partitioned into non-overlapped sub-domains by the use of the METIS_PartMeshDual routine 
provided by Metis package (Karypis and Kumar, 1998). Afterwards, the partitioned data is 
reordered to avoid memory dependency with a mesh coloring algorithm and the data locality 
is improved through a Reverse Cuthill Mckee algorithm. Finally, the nodes shared among 
partitions are indexed to be used on message passing communications.  
 

Most of the computational effort spent during the iterative solution of linear systems is 
due to evaluations of matrix-vector products or matvec for short. In our tests matvec 
operations achieved 92% of the total computational costs for element-by-element and 60% for 
edge-by-edge data structure. In element-by-element (EBE) and edge-by-edge (EDE) data 
structures this task is message passing parallelizable by performing matvec operations at each 
partition level, then assembling the contribution of the interface equations calling 
MPI_AllReduce routine. Finally, it is important to note that edge (and element) matrix 
coefficients are computed in single DO-LOOPS also in each partition. Figure 2 sketches how 
we have been computing hybrid (shared and distributed parallelisms simultaneously) matvec 
operations. In this figure we show a mesh with two partitions and colored in disjoint blocks to 
avoid data dependency for vectorization, pipelining and/or shared memory parallelism 
purposes. Note that by using pre-compiler directives one can generate code for shared only, 
distributed only and hybrid programming models. Results will be presented here only for the 
distributed memory model due the characteristics of the hardware employed. However, ivdep 
directives and the necessary mesh coloring were used to improve Itanium-2 performance 
through an effective use of its pipelines with no data dependencies.  
 
 
iside = 0 
DO iblk = 1, nedblk 
nvec  = iedblk(iblk) 
 
!dir$ ivdep 
!$OMP PARALLEL DO 
   DO i = iside+1, iside+nvec, 1 
      ...MATVEC computations... 
   ENDDO 
!$OMP END PARALLEL DO 
 
iside 
ENDDO 

= iside + nvec 

 
...over interface nodes... 
#ifdef MPICODE 
call MPI_AllReduce 
#endif 
  
  
Figure 2 – Matrix-vector product for distributed (Metis partitioning) and shared parallelisms 

(mesh coloring). 
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5 RESULTS 
 
In the following sections two benchmark problems are shown to evaluate the performance 
improvements, due the edge-based data structure, and accuracy of our implementation. The 
first problem is the well known lid driven cavity problem extended for the three dimensional 
case and the second complies a hypothetical laminar flow through the body of a Le Mans race 
car.  

All computations were made on a SGI Altix 350 system (Intel Itanium-2 CPUs with 
1.5 GHz and 24 Gb of NUMA flex memory). The system run Linux and Intel Fortran 
compiler 8.1. No optimizations further those provided by standard compiler flags (-O3) were 
made. 
 For all tests the numerical procedure considered a fully coupled u-p version of the 
stabilized formulation using linear tetrahedron elements. The parallel solver is composed by 
an outer inexact-Newton loop and an inner nodal block diagonal preconditioned GMRES 
linear solver. 
 
5.1 Three dimensional leaky lid-driven cavity flow 
 
In this well known problem the fluid confined in a cubic cavity is driven by the motion of a 
leaky lid. Boundary conditions consist in a unitary velocity specified along the entire top 
surface and zero velocity on the other surfaces. The model built with 5,151,505 tetrahedral 
elements; 6,273,918 edges and 1,061,208 nodes summarizing 4,101,106 equations is shown in 
Figure 3.  
 

 
Figure 3 – Flow in a leaky lid-driven cavity. Geometry and boundary conditions. 

 
Figure 4 show the computed vertical and horizontal velocities at the centerline for Reynolds 
1000 (left) and Reynolds 2000 (right). The results are compared with those recently presented 
by Lo et al. (2005). We may observe that all results are in good agreement.  
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Figure 4 – Three dimensional lid driven cavity flow validation (left) Re 1000 (right) Re 2000 
 
In Figure 5 we may observe the streamlines (left) for the case of Re=1000 and the 
corresponding pressure and velocity fields (right) at the cavity midplane.  Due to the 
particular boundary conditions this problem presents strongly three-dimensional features.   
 

  
Figure 5 – Streamlines (left), pressure and velocity at the midplane for Re=1000 
 
In Figure 6 we show the wall clock times for the EBE and EDE parallel solutions. Note that 
the EDE solutions are always faster than the EBE, but more pronounced for few processors. 
The EDE solution with one processor is faster than the EBE solution with two processors. 
However, we observed gains for the EDE solution until 16 processors, while for the EBE wall 
clock times diminish until 32 processors. 
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Figure 6 – Wall time comparison for element-by-element (EBE) and edge-by-edge (EDE) 
data structures 
 
5.2 Laminar flow through a Le Mans race car  
 
This problem consists on a hypothetical three-dimensional simulation of a laminar flow 
through the body of a Le Mans race car model for robustness and performance evaluation 
purposes. The model with 10,264,863 elements; 1,858,246 nodes; 12,434,433 edges resulting 
in 7,720,432 equations is shown in Figure 7. The computations were carried out up to the 
relative residual (||r||/||ro||) and the relative error (||Δu||/||u||) decreased 5 orders of magnitude. 
Some qualitative results are presented in Figure 8 with the streamlines around the car and 
pressure contour plotted over the car body.  
 

Figure 7 – Le Mans race car model and mesh. 
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Figure 8 – Results for the laminar flow through the Le Mans race car 
 
Table 2 lists the total memory, the memory per processor and the wall clock times for the 
EDE solution of this problem with an increasing number of processors. Since the SGI Altix 
provides us with a single image of the operational system, we were able to run this problem in 
only one processor even spending more memory than that available for each computing node. 
For the system employed, each computing node is built with 2 CPUs and 2 GB of memory 
and SGI refers this node as a C-Brick part of the system.  As the number of processors is 
increased, total memory increases, but the memory per processor diminishes and reaches the 
memory available locally at each SGI Altix 350 C-Brick In Figure 9 we show the scaled 
speedups and efficiencies computed according to the Gustafson’s law (see Gustafson et al., 
1988 for details) and defined by Ss = n + (1-n) s, where n is the number of processors and s 
corresponds to the normalized time spent in the serial portion of the program. Theses results 
show good parallel performance despite the case with 2 processors where the parallel 
performance has fallen down below of expected.  
 

Table 2. Memory and timings for the Le Mans car problem. 
 

 Total memory
Gb 

Memory per CPU
Gb 

Wall time 
hh:mm:ss 

1 7.07 7.07 06:58:34 
2 7.10 3.55 05:16:05 
4 7.21 1.80 02:00:10 
8 7.56 0.95 01:05:41 
12 8.04 0.67 00:53:03 
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Figure 9 – Parallel performance on SGI Altix 350 (left) Scaled speedup and (right) Scaled 
parallel efficiency 
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Figure 10 – Inexact nonlinear method behavior (left) Relative nonlinear residual. (right) 
GMRES tolerance (bars) controlled by inexact nonlinear method and time per nonlinear 

iteration (lines) 
 
In Figure 10 we may observe the behavior of the inexact nonlinear solution method. The 
stopping criterion was satisfied after 35 nonlinear iterations and the linear tolerance ranged 
from 0.99 to 0.075 at nonlinear iteration 27. The first 15 iterations were very fast, and as soon 
as the relative residual starts to drop, the linear tolerance is tightened and oscillates until 
convergence.  
 
6 CONCLUSIONS 
 
We have tested the performance of an edge-based inexact Newton-type algorithm to solve 
nonlinear systems of equations arising from the SUPG/PSPG finite element formulation of 
steady incompressible flows. Numerical tests in two 3D problems, the lid driven cavity flow 
at Reynolds numbers 1000 and 2000 and the flow around a Le Mans car, have shown the code 
good parallel performance in the SGI Altix. We have observed that the inexact methods adapt 
the inner Krylov space iterative method tolerance to follow the solution progress towards the 
solution. The code supports shared, distributed and hybrid programming models with standard 
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libraries and interfaces and thanks to the edge-based data structures, we have been able to 
solve complex flow problems involving 12 million of tetrahedra in moderate sized machines. 
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