
Digital Filters in Adaptive Time-Stepping

GUSTAF SÖDERLIND
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Adaptive time-stepping based on linear digital control theory has several advantages: the algo-
rithms can be analyzed in terms of stability and adaptivity, and they can be designed to produce
smoother stepsize sequences resulting in significantly improved regularity and computational sta-
bility. Here, we extend this approach by viewing the closed-loop transfer map Hϕ̂ : log ϕ̂ 7→ log h as
a digital filter, processing the signal log ϕ̂ (the principal error function) in the frequency domain,
in order to produce a smooth stepsize sequence log h. The theory covers all previously considered
control structures and offers new possibilities to construct stepsize selection algorithms in the
asymptotic stepsize-error regime. Without incurring extra computational costs, the controllers can
be designed for special purposes such as higher order of adaptivity (for smooth ODE problems)
or a stronger ability to suppress high-frequency error components (nonsmooth problems, stochas-
tic ODEs). Simulations verify the controllers’ ability to produce stepsize sequences resulting in
improved regularity and computational stability.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—initial value problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adaptivity, algorithm analysis, control theory, digital filters,
error control, mathematical software, stepsize control

1. INTRODUCTION

This article will develop new strategies for adaptive stepsize selection using
linear digital control theory. Although it might at first appear unfamiliar to the
numerical analyst, digital control (see, e.g., Åström and Wittenmark [1990])
is based on our common, classical theories of linear difference equations, dif-
ference operators and stability, making extensive use of the discrete Laplace
transform (the z transform). Bearing this in mind, basic control theory is read-
ily accessible also to the numerical analyst. A survey of control theoretic adap-
tive stepsize selection, introducing the pertinent terminology and techniques,
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is found in Söderlind [2002], which also develops the analysis of the established
PI stepsize controllers, [Gustafsson 1991, 1994]. The reader is assumed to be
acquainted with that background.

We shall assume that the stepsizes used in the numerical adaptive solution
of an initial value ODE or DAE problem are such that the local error estimator’s
dependence on the stepsize is accurately described by the asymptotic model

r̂n = ϕ̂nhk
n, (1)

where ϕ̂n is the norm of the principal error function. No further assumptions
about the computational process will be made. For convenience, the recursion
indexing in (1) departs from Gustafsson [1991, 1994] and Söderlind [2002] in
order to eliminate a trivial common factor in the z transforms that represent
the system.

The elementary stepsize selection algorithm commonly used in locally adap-
tive time-stepping [Gear 1971, p. 156] is

hn+1 =
(
ε

r̂n

)1/k

hn, (2)

where ε = θ · TOL, θ < 1 is a suitable safety factor, and TOL is the local error
tolerance; if the local error estimate r̂n exceeds TOL, the step will be rejected
and recomputed with a reduced stepsize. If the order of convergence of the
time-stepping method is p, then one takes the power k = p + 1 for an error-
per-step (EPS) control, and k = p for an error-per-unit-step (EPUS) control;
the choice is in no way crucial to the theory that will be developed below. This
elementary control is typically implemented with limiters and discontinuities
that, when less judiciously employed, make the order of adaptivity equal 0, see
the survey [Söderlind 2002]. Such heuristic schemes will not be treated in this
article. Instead, we aim for a rigorous analysis based on linear control and filter
theory.

The behavior of the recursion (2) can be analyzed in terms of the theory of
linear difference equations by taking logarithms; one then obtains

log hn+1 = log hn + 1
k

(log ε − log r̂n). (3)

This is a first order adaptive, purely integrating deadbeat controller [Söderlind
2002]. It has been thoroughly analyzed for one-step (Runge–Kutta) methods
and is known to have several shortcomings such as an oscillatory behavior
when the stepsize is limited by numerical stability, as well as a “nervous” and
nonsmooth response to error estimates contaminated by numerical noise. A
number of alternative approaches have therefore been studied in the litera-
ture, see Gustafsson et al. [1988], Gustafsson [1991, 1994], Hall [1985, 1986],
Hall and Higham [1988], Higham and Hall [1990], Söderlind [2002], Watts
[1984], and Zonneveld [1964]. In particular, there is an extensive theory for
PI (proportional–integral) controlled time-stepping [Gustafsson et al. 1988;
Gustafsson 1991; Hairer et al. 1993; Hall 1985; Söderlind 2002], including error
estimation [de Swart and Söderlind 1997], parameterization and synchroniza-
tion with other types of logic and support algorithms in software [Gustafsson
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and Söderlind 1997], as well as pseudocode descriptions of the controllers to
facilitate a simple implementation [Gustafsson 1991, 1994; de Swart 1997].

We shall develop a fully general control structure for locally adaptive time-
stepping, using digital filter theory. The controller can in principle be employed
at no extra computational expense. Controller parameters are selected to atten-
uate high frequency contents (“noise”) in {log ϕ̂n}, with the aim to provide highly
regular stepsize sequences for nonsmooth problems such as stochastic differ-
ential equations. The theory is however equally important for implicit methods
for ODEs and DAEs, where irregularities are often incurred by, for example,
remaining Newton iteration errors. The efficiency gain is in terms of qualitative
improvement and increased computational stability.

2. TRANSFER FUNCTIONS, FREQUENCY RESPONSE
AND DIGITAL FILTERS

Let log r̂, log h and log ϕ̂, respectively (i.e., without subscripts), denote the se-
quences {log r̂n}, {log hn} and {log ϕ̂n}. Further, let q denote the forward shift op-
erator. The difference equation (3) is then written (q−1) log h = k−1(log ε−log r̂),
corresponding to the control law

log h = 1
k

1
q − 1

(log ε − log r̂) = C(q) · (log ε − log r̂), (4)

where C(q) is the control transfer function, which for the elementary con-
troller (2) is given by

C(q) = 1
k

1
q − 1

. (5)

As 1 = q − 1 is the forward difference operator, 1/(q − 1) is a summation
operator—the discrete analogue of an integral operator—hence, the name inte-
gral control.

The asymptotic stepsize—error relation (1) is written as log r̂ = G(q) log h+
log ϕ̂, where G(q) = k is the process transfer function. The asymptotic model is
therefore static with a constant gain k.

The interaction of process and controller is described by the linear system

log r̂ = G(q) log h+ log ϕ̂ (6)
log h = C(q) · (log ε − log r̂). (7)

Solving for log r̂ and log h, using the asymptotic process model G(q) = k but
leaving the choice of C(q) open, we obtain the closed loop dynamics [Söderlind
2002],

log r̂ = Rε(q) log ε + Rϕ̂(q) log ϕ̂ (8)
log h = Hε(q) log ε + Hϕ̂(q) log ϕ̂. (9)

This expresses how the two inputs, the setpoint log ε and the disturbance log ϕ̂,
influence the two outputs, the error estimate log r̂ and the stepsize log h, when
the process/controller interaction has been taken into account, see Figure 1.
Note that log h is the internal means of adaptivity, or the control, making the
error adapt to log ε, which is the external means of adaptivity.
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Fig. 1. Adaptive stepsize selection viewed as a feedback control system. The process consists of the
discretization method which takes a given stepsize log h as input and produces an error estimate
output log r̂ = G(q) log h + log ϕ̂, where the external, additive disturbance log ϕ̂ accounts for the
properties of the ODE. The error estimate is fed back with reversed phase and added to log ε to
compare actual and desired error levels. This control error is mapped by the controller to the next
stepsize log h, through log h = C(q) · (log ε− log r̂). The entire closed loop system has two inputs, the
setpoint log ε and the disturbance log ϕ̂. It has two outputs, the error log r̂ and the internal control
log h. They are related to the inputs through the closed loop transfer functions.

As log ε is constant, we may here for convenience but without loss of gener-
ality put log ε = 0, but several formulas below will for clarity still include ε. We
are then left with the stepsize transfer map Hϕ̂(q) : log ϕ̂ 7→ log h and the error
transfer map Rϕ̂(q) : log ϕ̂ 7→ log r̂, given by

Hϕ̂(q) = − C(q)
1+ k · C(q)

; Rϕ̂(q) = 1
1+ k · C(q)

, (10)

where C(q) remains to be chosen. The error transfer map can be viewed both
as a map from log ϕ̂ to the error log r̂ and to the control error log ε − log r̂, as
these quantities only differ by a constant. As we have taken log ε = 0, these
become identical (up to a sign), and the controller’s objective, which is to make
the control error small, can be studied directly from the behavior of Rϕ̂(q).

In our context, a digital filter is a discrete-time dynamical system. Here, we
shall interpret Hϕ̂(q) and Rϕ̂(q) as digital filters, implying that the stepsize
sequence log h is considered to be obtained through digital signal processing
of the external disturbance log ϕ̂. The filter properties are determined by the
poles and zeros of these transfer maps, and will be analyzed in the frequency
domain.

If we consider the stepsize transfer map, then (9) and (10) imply that the
closed loop dynamical system is described by the difference equation

(1+ k · C(q)) log h = −C(q) log ϕ̂, (11)

which depends on the actual choice of controller dynamics C(q). The operators
C(q), Hϕ̂(q) and Rϕ̂(q) are rational functions of q, and in each case the numerator
and denominator are assumed to have no common factor. However, Hϕ̂(q) and
Rϕ̂(q) have the same denominator.

Definition 2.1. The order of dynamics pD of the closed loop system equals
the degree of the denominator of Hϕ̂(q).

The poles of the transfer functions (the roots of the characteristic equation)
determine the stability of the closed-loop system. The system is called stable if

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.



Digital Filters in Adaptive Time-Stepping • 5

all poles of Hϕ̂(q) are located strictly inside the unit circle. The homogeneous
solutions of (11) are further supposed to be smooth and decay reasonably fast.
If these necessary conditions are met, the next criterion is to make sure that
the particular solutions of (11) can be shown to have an improved smoothness
compared to the forcing term log ϕ̂; this is the filter design problem.

The spectral properties of the transfer map Hϕ̂(q) have a significant effect
on the smoothness of stepsize sequences. A bounded input signal log ϕ̂ may
be represented by a linear combination of “periodic” data sequences {cosωn}
with frequencies ω ∈ [0, π ]; constant functions correspond to ω = 0, and the
Nyquist frequency ω = π corresponds to the oscillation (−1)n, which is the
highest frequency that can be resolved according to the sampling theorem. To
simplify the analysis, one considers complex data sequences log ϕ̂ = {eiωn}, one
frequency ω ∈ [0, π ] at a time [Söderlind 2002]. As Hϕ̂(q) : log ϕ̂ 7→ log h is
a linear map, the output log h has the same spectral content as log ϕ̂. Hence,
log h = A(ω){eiωn}. Disregarding phase, the amplitude |A(ω)| reveals whether
the frequency ω is amplified or attenuated. From (11), we obtain

(1+ k · C(eiω))A(ω)eiωn = −C(eiω)eiωn. (12)

and it follows that |A(ω)| = |Hϕ̂(eiω)|.
Definition 2.2. The error frequency response and scaled stepsize frequency

response are defined by |Rϕ̂(eiω)| and |kHϕ̂(eiω)|, respectively, for ω ∈ [0, π ].

The scaling factor k is a normalization that makes |kHϕ̂(1)| = 1, irrespective
of the actual method order. Frequency responses will be plotted in log-log dia-
grams (Bode diagrams), and measured in the ISO unit of decibel (dB), that is,
in terms of 20 log10 |kHϕ̂(eiω)| and 20 log10 |Rϕ̂(eiω)|, respectively.

Now, for the elementary controller (5), the transfer functions are

Hϕ̂(q) = − 1
kq

; Rϕ̂(q) = q − 1
q

. (13)

Here we make three observations: First, the pole is located at the origin, show-
ing that the closed loop is stable. Second, as the elementary controller’s scaled
stepsize frequency response |kHϕ̂(eiω)| ≡ 1 is independent of ω, it has no regu-
larizing effect on the stepsize sequence. Third, Rϕ̂(1) = 0, which demonstrates
that the controller is at least first-order adaptive, a notion we define as follows:

Definition 2.3. Let Rϕ̂(q) have all its poles strictly inside the unit circle.
If the error transfer function satisfies |Rϕ̂(q)| = O(|q − 1|pA) as q → 1, the
controller’s order of adaptivity is pA.

This order notion can be expressed in the time domain in terms of polyno-
mials: let log ϕ̂ = {P (n)} be a polynomial sampled at integer points. As Rϕ̂(q)
contains the difference operator (q − 1)pA = 1pA , it will annihilate all poly-
nomials of degree pA − 1. Hence, log ε − log r̂n → 0 at a rate determined by
the magnitude of the poles: the local error is adapted to the tolerance. But the
notion can also be expressed in the frequency domain: if log ϕ̂ = {eiωn}, then,
since 1pA{eiωn} = (eiω − 1)pA{eiωn}, we have log ε − log r̂ = O(ωpA) as ω → 0, if
homogeneous solutions have decayed. Thus, the error frequency response of a
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stable system is |Rϕ̂(eiω)| = O(ωpA) as ω→ 0 if and only if the order of adaptivity
is pA, and this order is revealed by the slope of the error frequency response
graph [Söderlind 2002].

Apart from the error transfer function’s zero at q = 1, it is possible to regu-
larize the stepsize sequence log h = Hϕ̂(q) log ϕ̂ by making sure that Hϕ̂(q) = 0
at q = eiπ = −1; this will annihilate the frequency ω = π . Thus, log h will not
contain the oscillatory sequence {(−1)n} even if it is present in log ϕ̂. Other high
frequencies will be suppressed as well. Therefore, by placing a zero of Hϕ̂(q)
at a suitable location on the unit circle, signal transmission of that particular
frequency is blocked. Here, we limit ourselves to q = −1 and introduce a simple
notion of filter order.

Definition 2.4. Let Hϕ̂(q) have all its poles strictly inside the unit circle. If
the stepsize transfer function satisfies |Hϕ̂(q)| = O(|q + 1|pF ) as q → −1, the
stepsize filter order at q = −1 is pF .

In control theory, it is well known that a controller C(q) must contain the
operator 1/(q − 1), known as “integral action,” in order to have pA ≥ 1, see
also Söderlind [2002]. From this basic requirement, we can construct a general
controller.

Definition 2.5. The general control map for adaptive time-stepping is rep-
resented by the rational function

C(q) = P (q)
(q − 1)Q(q)

, (14)

where the polynomials P and Q are relatively prime and P (1) 6= 0. Further,
deg(Q) = deg(P ) = pD − 1, where pD is the order of the closed loop dynamics.

The general controller’s stepsize recursion log h = C(q) · (log ε − log r̂) now
corresponds to the difference equation

(q − 1)Q(q) log h = P (q) · (log ε − log r̂). (15)

As log r̂n depends on log hn, the degree of P must not exceed the degree of Q ,
or the stepsize recursion would become implicit. Thus, the general controller is
completely parameterized by introducing the polynomials

P (q) =
pD∑
j=1

β j q pD− j ; Q(q) = q pD−1 +
pD∑
j=2

α j q pD− j . (16)

We shall especially consider third-order dynamics, in which case we have

P (q) = β1q2 + β2q + β3 ; Q(q) = q2 + α2q + α3. (17)

Controllers with pD = 2 are naturally embedded within the class of pD = 3
controllers. If one starts from (16) or puts α3 = β3 = 0 in (17) is immaterial; a
common factor of q may be eliminated from (14)–(15) as this pole-zero cancel-
lation does not affect the dynamics.
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Table I. Control Structures that have been Used for Adaptive Time-Stepping. Included,
Free Controller Parameters are Marked ‘×’ and the Maximum Orders for Each Structure

is Given

Parameters Orders Type
kβ1 kβ2 kβ3 α2 α3 pD pA pF

1 1 1 − elementary control [Gear 1971]
× 1 1 convol. I control [Söderlind 2002]
× × 2 1 ≤ 1 PI control∗
2 −1 −1 2 2 0 PC deadbeat†

× × −1 2 2 0 predictive control [Söderlind 2002]
× × × 3 1 ≤ 2 PID control
× × × −1 3 2 ≤ 1 predictive PID
× × × 2 ≤ 2 ≤ 1 general filter
× × × × × 3 ≤ 3 ≤ 2 general filter

∗See Gustafsson et al. [1988], Gustafsson [1991], Hall [1985], and Söderlind [2002].
†See Gustafsson [1994], Watts [1984], and Zonneveld [1964] .

Inserting the operators P (q) and Q(q) into (15), we find the stepsize recursion

hn+1 =
(
ε

r̂n

)β1
(

ε

r̂n−1

)β2
(

ε

r̂n−2

)β3
(

hn

hn−1

)−α2
(

hn−1

hn−2

)−α3

hn. (18)

This structure covers all linear controllers with pD ≤ 3, and provides a full set
of five parameters for the design of the stepsize and error filters

−kHϕ̂(q) = kP (q)
(q − 1)Q(q)+ kP (q)

; Rϕ̂(q) = (q − 1)Q(q)
(q − 1)Q(q)+ kP (q)

, (19)

which are obtained by inserting (14) into (10). The actual controller parameter-
ization is then a byproduct of the filter design, as C(q) = −Hϕ̂(q)/Rϕ̂(q).

Controllers will be categorized by the labeling HpD, pA, pF , to indicate the
orders of dynamics pD and adaptivity pA, as well as the filter order pF at
q = −1. For example, the elementary controller is in the H110 category and
PI controllers are in H210 and H211, but there are also other controllers
in these categories. Deadbeat controllers are identified by a subscript 0, like
in H0110 for the elementary controller. Finally, the letter R replaces H, like in
R0321, to indicate that the filter is applied to the error sequence log r̂ instead of
to the stepsize sequence log h. Table I indicates where in the literature various
subclasses of controllers have been considered and gives their main properties.

Some general properties of the filter pair (19) should be noted. When pD = 3,
Hϕ̂(q) has two zeros and three poles. As we have five parameters at our dis-
posal, we have, in principle, full control of the stepsize filter. But there is a
complementarity between Hϕ̂(q) and Rϕ̂(q). For example, if for some q∗ we
have P (q∗) = 0, then Rϕ̂(q∗) = 1, see (19). Conversely, if Q(q∗) = 0, then
−kHϕ̂(q∗) = 1. For the frequency responses in particular, this implies that, if
|kHϕ̂(eiω∗ )| = 0, then |Rϕ̂(eiω∗ )| = 1, and vice-versa. Thus, for example, a (−1)n

oscillation in log ϕ̂ cannot simultaneously be removed from the sequences log h
and log r̂. In view of (1), the effects of a nonsmooth log ϕ̂ must naturally be ac-
commodated by either log h or log r̂: choosing a constant stepsize implies that
log r̂ accommodates the full variation of log ϕ̂. Conversely, if it were possible
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to choose log hn = (log ε − log ϕ̂n)/k, the error estimate would have been con-
stant, log r̂ = log ε. The filter design problem is to find a compromise that keeps
log r̂ ≈ log ε while log h remains smooth.

We shall develop new controllers of class H211, H312 and H321, and show
both theoretically and in simulations that the proposed controllers have a strong
ability to suppress noise in log ϕ̂. A single implementation of filter/controller
could be employed, while still allowing particular problem classes to use spe-
cial controllers. We also discuss a factorization of the controller that makes it
possible to separate the filter characteristic from the basic, integral control ac-
tion; this is of particular interest as it enables the control error log ε − log r̂ to
stay closer to zero.

3. ORDER CONDITIONS

Order conditions are given below for controllers of dynamic order pD ≤ 3. From
(19), it follows that Q(q) determines the order of adaptivity pA. Similarly, the
stepsize filter order pF is determined by P (q). This subdivision makes it possible
to apply different filter design objectives to the control structure (18).

3.1 Adaptivity Order Conditions

The order of adaptivity is increased by placing extra zeros of Rϕ̂(q) at q = +1.
The adaptivity order conditions are

pA = 2⇔ α2 + α3 = −1, (20)
pA = 3⇔ α2 = −2; α3 = 1. (21)

If pD = 2, then pA ≤ 2 as α3 = 0. For pD = 3, (21) implies (20). If the order of
adaptivity is pA, then the difference operator (q − 1)pA−1 is a factor of Q(q).

3.2 Stepsize Low-Pass Filter Order Conditions

For nonsmooth problems, a controller providing some stepsize regularization
may be required. Stepsize low-pass filters remove high-frequency content and
let low-frequency content pass through. They are obtained by placing one zero
(or more) of Hϕ̂(q) at q = −1. The stepsize filter order conditions at q = −1 are

pF = 1⇔ β1 − β2 + β3 = 0, (22)
pF = 2⇔ β1 = β2/2 = β3. (23)

If pD = 2, then β3 = 0 and pF ≤ 1. For pD = 3, (23) implies (22). A filter order
pF implies that the averaging operator (q + 1)pF is a factor of P (q). Thus, (23)
corresponds to repeated averaging, a classical technique for regularizing noisy
data.

3.3 Error Low-Pass Filter Order Conditions

A low-pass filter may be used in a similar way to regularize the error sequence
log r̂, by placing one zero (or more) of Rϕ̂(q) at q = −1. Thus, the error filter
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order conditions at q = −1 are

pR = 1⇔ α2 − α3 = 1, (24)
pR = 2⇔ α2 = 2; α3 = 1, (25)

where the subscript R indicates error filtering. Again, (25) implies (24). As these
conditions use the same parameters as (20)–(21), we must give up some order of
adaptivity to filter log r̂. Moreover, as it is impossible to simultaneously remove
the same frequency from the stepsize and error sequences (complementarity),
we would also have to give up stepsize low-pass filtering altogether; recall that
|Rϕ̂(−1)| = 0 implies |kHϕ̂(−1)| = 1.

4. DEADBEAT CONTROLLERS AND HIGH-FREQUENCY EMPHASIS

We shall first derive the simplest controllers that generalize the elementary
controller hn+1 = (ε/r̂n)1/k hn, which is known as a deadbeat controller as its
poles are located at the origin. Deadbeat can be achieved for all orders pA with
the controller (14); the characteristic equation, of degree pD, is (q − 1)Q(q) +
kP (q) = 0, or

q3 + (kβ1 + α2 − 1)q2 + (kβ2 − α2 + α3)q + kβ3 − α3 = 0. (26)

Out of the controller’s 2pD−1 parameters, see (17), the pD−1 coefficients αi are
specified by the adaptivity order conditions (21). The remaining pD paramaters
kβi can be used to place the pD poles at any prescribed locations.

For pD = 1, there is a single parameter kβ1, and the choice kβ1 = 1 puts the
pole at the origin; this defines the elementary controller, labeled H0110. For
pD = 2, we have second order adaptivity if α2 = −1, and we must then take
kβ1 = 2 and kβ2 = −1 to achieve deadbeat control; this is the H0220 predictive
controller suggested in Gustafsson [1994], Watts [1984], and Zonneveld [1964]
and analyzed in Gustafsson [1994]. Finally, for pD = 3, the adaptivity condition
(21) imposes α2 = −2 and α3 = 1; this leads to kβ1 = −kβ2 = 3 and kβ3 = 1, or
the third order adaptive H0330 controller

hn+1 =
(
ε

r̂n

)3/k (
ε

r̂n−1

)−3/k (
ε

r̂n−2

)1/k ( hn

hn−1

)2(hn−1

hn−2

)−1

hn. (27)

With their poles at the origin, deadbeat controllers have the best possible
intrinsic stability. But Figure 2 reveals that deadbeat controllers put an unde-
sirable emphasis on high frequencies that makes both log h and log r̂ rougher
than log ϕ̂. They are therefore suitable only for very smooth problems, and also
put stringent demands on how supporting algorithms, such as equation solvers,
are implemented.

Still within deadbeat designs, to reduce the high-frequency emphasis, we
may use either a stepsize low-pass filter or an error low-pass filter. Let us for
pD = 2 require pF = 1, that is, we impose the filter condition (22). The two
remaining parameters are used to place the roots of (26) at the origin. This
implies kβ1 = kβ2 = α2 = 1/2 and leads to the unique H0211 controller

hn+1 =
(
ε

r̂n

)1/(2k)(
ε

r̂n−1

)1/(2k)( hn

hn−1

)−1/2

hn. (28)

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.



10 • Gustaf Söderlind

Fig. 2. H0110, H0220 and H0330 deadbeat controllers. Scaled stepsize frequency response
20 log10 |kHϕ̂(eiω)| (left) and error frequency response 20 log10 |Rϕ̂ (eiω)| (right) is shown for ω ∈
[0.1, π ]. As |Rϕ̂ (eiω)| = O(ωpA ), we observe the characteristic 20, 40 and 60 dB/decade slopes at
low frequencies for adaptivity orders pA = 1, 2, 3, respectively (right). Consequently, as pA is in-
creased, low-frequency components in log ε− log r̂ are strongly suppressed, although at the cost of
high frequency emphasis: |Rϕ̂(eiπ )| increases from +6 dB to +12 dB and +18 dB. High-frequency
content in log h (left) also increases, however, by +10 dB and +17 dB for H0220 and H0330, respec-
tively. The controllers are therefore suitable only for smooth problems, where log ϕ̂ has a negligible
high-frequency content.

Table II. Overview of the Nine Unique, Maximum Order Deadbeat Controllers with pD ≤ 3

kβ1 kβ2 kβ3 α2 α3 pD pA pF pR Designation

1 1 1 − − H0110
2 −1 −1 2 2 0 − H0220

1/2 1/2 1/2 2 1 1 − H0211
0 1 1 2 1 − 1 R0211
3 −3 1 −2 1 3 3 0 − H0330

5/4 1/2 −3/4 −1/4 −3/4 3 2 1 − H0321
1 1 −1 0 −1 3 2 − 1 R0321

1/4 1/2 1/4 3/4 1/4 3 1 2 − H0312
−1 1 1 2 1 3 1 − 2 R0312

For pD ≤ 3, there are exactly nine structurally different deadbeat controllers
maximizing adaptivity and/or filter order by various combinations of the order
conditions of Section 3. Table II describes their structure and parameterization.

5. FILTER DESIGN

The main objective for constructing stepsize/error filters is to overcome the
deadbeat controller’s high frequency emphasis and generate smoother stepsize
and error sequences. An offending high frequency content in log ϕ̂ can be re-
duced in both log h and log r̂, at the cost of an increased low frequency content
in the control error log ε− log r̂. Examples are the H0211 and H0312 compared
to the elementary H0110, all first-order adaptive, see Figure 3. Moreover, the
comparison of H0321 with a similar nondeadbeat H321 controller shows that
properly designed “noise shaping” can simultaneously further reduce the high
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Fig. 3. Controllers with stepsize low-pass filters. Stepsize (left), error (center) and controller fre-
quency response 20 log10 |C(eiω)| (right) for ω ∈ [0.1, π ]. In each diagram the deadbeat controllers
(solid lines) intersect the −10 dB level in the following order from left to right: H0312, H0211,
H0321. For the first two, the low-pass filters significantly reduce high frequency emphasis (left,
center). In H0321, however, amplification for ω ∈ (1, 2) is considerable and only top frequencies are
attenuated. For H0211 and H0312, the controller response (right), shows distinct −20 dB/decade
slopes up to ω = 2, demonstrating first order integral action. The second order integral action of
H0321 would, however, only be seen below ω = 0.3. The dashed line is the non-deadbeat H321
controller. Compared to H0321, it shows that frequency emphasis can be reshaped. High-frequency
content is significantly reduced both in stepsize and error.

Fig. 4. Deadbeat controllers with error low-pass filters. Stepsize frequency response (left) of R0211
is independent of ω and responses of R0321 and R0312 coalesce. The error (center) and controller
frequency responses (right) intersect the 0 dB level in the left-to-right order: R0312, R0211, R0321.
Error low-pass filtering is effective only at top frequencies (center) and the considerable amplifica-
tion for ω ∈ (0.5, 2) shows no substantial improvement over the deadbeat controllers in Figure 2.
The controller now has a pole instead of a zero at ω = π .

frequency content in log h and log r̂, although (1) always holds. The price is an
increased low-frequency error.

A comparison of stepsize low-pass filtering vs. error low-pass filtering indi-
cates that the former is preferable (see Figures 3 and 4); the controller’s fre-
quency response then has a zero rather than a pole at ω = π . Thus, the starting
point for designing good filters is to consider modifications to H0211, H0312 and
H0321.

Parameter choice is anything but arbitrary. Specific filter characteristics are
found only in certain (affine) parameter subspaces, defined by order conditions.
Stable filters (closed loops) are located only in a bounded subset, the stability
region, of each subspace. However, only part of the stability region corresponds
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to acceptable closed-loop dynamics. Pole placement, frequency responses and
time domain simulations together determine the final parameterization; dif-
ferent filters can be constructed for different classes of method/problem com-
binations, in particular for smooth and nonsmooth problems. ODE, DAE and
SDE solvers can benefit from using dedicated classes of filters; in some cases,
a smooth log h is more important than having | log ε− log r̂n| small at all times.

5.1 First-Order Dynamics

For pD = 1, we have the H110 controller hn+1 = (ε/r̂n)β1 hn with stepsize filter
Hϕ̂(q) = −β1/(q − 1+ kβ1) and error filter Rϕ̂(q) = (q − 1)/(q − 1+ kβ1). As the
pole is q = 1 − kβ1, the closed loop is stable if kβ1 ∈ (0, 2), and kβ1 = 1 turns
it into the deadbeat H0110. A reduced integral gain, kβ1 ∈ (0, 1), gives slower
dynamics and smoother stepsizes. The map log h = Hϕ̂(q) log ϕ̂ then implies the
difference equation (q − 1+ kβ1) log h = −β1 log ϕ̂, with solution

log hn = (1− kβ1)n log h0 − β1

n∑
m=1

(1− kβ1)n−m log ϕ̂m−1. (29)

When kβ1 ∈ (0, 1) this is known as “exponential forgetting” or a convolution
filter, see Söderlind [2002] and Table I, with a limited ability to attenuate high-
frequency contents in log ϕ̂. The smaller one chooses kβ1, the smoother is the
stepsize sequence. However, the homogeneous solution also decays slower, see
(29), so a compromise is necessary. For smooth problems, kβ1 ∈ (0.7, 1) is likely
to work fine, but if log ϕ̂ has a significant high-frequency content, then kβ1 ∈
(0.3, 0.5), offers an improved attenuation of high frequencies. Plots of stepsize
and error frequency responses are found in Söderlind [2002].

A similar convolution filter expression can also be obtained for the error,

log r̂n = (1− kβ1)n log r0 +
n∑

m=1

(1− kβ1)n−m(log ϕ̂m − log ϕ̂m−1), (30)

showing a regularization of the difference {log ϕ̂n− log ϕ̂n−1} if kβ1 ∈ (0, 1). Note,
however, that if kβ1 = 1, then log r̂n = log ϕ̂n − log ϕ̂n−1. Hence, if log ϕ̂ contains
the oscillation (−1)n, then log r̂n could be twice as large as log ϕ̂n. As a factor
of 2 corresponds to +6 dB, this explains the magnitude of the error frequency
response at ω = π for the elementary H0110 controller, see Figure 2.

5.2 Second-Order Dynamics

For pD = 2, the controller is hn+1 = (ε/r̂n)β1 (ε/r̂n−1)β2 (hn/hn−1)−α2 hn. This
structure offers a wide range of possibilities, covering all PI and predictive
controllers [Gustafsson 1991, 1994; Söderlind 2002]. PI controllers are first or-
der adaptive and generally belong to H210 [Gustafsson 1991], but some belong
to H211, provided a negative proportional gain is acceptable. The H0220 is fully
covered in Gustafsson [1994] and Söderlind [2002]. But the free parameter α2
implies that new H211 controllers can be constructed.

In order to obtain a smoother behavior than that of H0211, the overall control
gain must be reduced. Given the first-order filter condition, the pole locations
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Fig. 5. H211 closed loop stability region in the (kβ1, α2) parameter plane. Level curves enclose
stable controllers with closed loop poles of maximum magnitude 1, 0.95, 0.9, etc. Poles are real
above the caustic and complex conjugate below it; the dominating pole has positive real part below
the dashed line and negative above it. Controllers with a desirable behavior are found above the
caustic and below the dashed line. The H211b family is located on the solid line starting at the
deadbeat H0211, marked ‘◦’ at (1/2, 1/2). Further, the class H221 is empty, since pA = 2 requires
α2 = −1, which forces kβ1 = kβ2 = 0.

are determined by (kβ1, α2); in Figure 5, the stability region is plotted. H211
controllers with well-located closed-loop poles and good frequency responses
are given by the one-parameter family H211b, defined by

hn+1 =
(
ε

r̂n

)1/(bk)(
ε

r̂n−1

)1/(bk)( hn

hn−1

)−1/b

hn. (31)

The closed-loop poles are 0, 1 − 2/b, that is, one pole has moved out from the
origin. Stability then requires b ∈ (1,∞), although b ≥ 2 is needed to prevent
the nonzero pole from being negative and causing an oscillatory closed-loop
impulse response. But b can be varied significantly while the overall control
behavior largely remains qualitatively intact, and one may in practice choose
b ∈ [2, 8], with larger values offering increased smoothness. A value of b = 4 is
recommended, see Figure 6. An important consequence of the wide parameter
range is robustness: if the value of k is wrong because of order reduction or
similar phenomena, the dynamics of the controller will not change dramatically.

The class H221 of second-order adaptive, first order stepsize low-pass
filtering controllers is empty. This is easily seen both from the stability
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Fig. 6. One-parameter family of H211b controllers. Stepsize (left), error (center) and controller
frequency response (right) for H211b controllers with b = 2, 4, 6, 8. The dashed line indicates
deadbeat H0211 for which b = 2. Increasing values of b, corresponding to a lowered overall integral
gain (right), increases stepsize and error smoothness, but also increases low-frequency control
errors.

region (Figure 5) or from the characteristic equation by applying the Schur
criterion.

5.3 Third-Order Dynamics

In order to construct controllers of class H312, with enhanced regularity com-
pared with the deadbeat H0312, we shall move some poles out of the origin.
Leaving (at least) one pole q = 0, the stability region can be studied in the
(kβ1, α2) plane, see Figure 7, and a construction similar to that of the H211b
family is possible. Thus, we define the H312b family by

hn+1 =
(
ε

r̂n

)1/(bk)(
ε

r̂n−1

)2/(bk)(
ε

r̂n−2

)1/(bk)( hn

hn−1

)−3/b(hn−1

hn−2

)−1/b

hn.

Just like the H211b, the H312b family is located on a straight line segment,
connecting the deadbeat controller to the origin in the stability region. The
closed loop poles are 0, 0, 1 − 4/b; stability therefore requires b ∈ (2,∞),
but preventing oscillations requires b ≥ 4. In practice one may choose b ∈
[4, 16], with larger values offering increased smoothness. The value b = 8
is recommended, and frequency responses become very similar to those of
Figure 6, except with the high frequency attenuation in the stepsize se-
quence doubled due to pF = 2; the controller therefore offers even higher
regularity.

The construction of H321 controllers follows similar lines. To increase regu-
larity, the overall control gain must be reduced. We prescribe the order condi-
tions for pA = 2 and pF = 1 and place the poles at q = 1/3, 1/2, 2/3. This leads
to the parameterization

hn+1 =
(
ε

r̂n

)1/(3k)(
ε

r̂n−1

)1/(18k)(
ε

r̂n−2

)−5/(18k)( hn

hn−1

)5/6(hn−1

hn−2

)1/6

hn.

Its frequency responses are shown with a dashed line in Figure 3, and show
that a significant redistribution of the frequency content has been achieved com-
pared to H0321. As a result, this H321 controller offers improved smoothness.
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Fig. 7. H312 closed loop stability region in the (kβ1, α2) parameter plane for kβ3 = α3, that is, at
least one pole is q = 0, see (26). The deadbeat controller H0312 is marked ‘◦’ at (1/4, 3/4). Level
curves, caustic line and dashed separatrix have the same interpretation as in Figure 5.

For pD = 3, higher order controllers than H312, H321 and H330 cannot be
constructed as the classes H322 and H331 are empty.

6. PID CONTROL

Within the general control structure, one finds the best-known and most fre-
quently used controllers. A standard type is PID control, and we investigate
controllers of first- and second-order adaptivity.

6.1 First-Order Adaptivity

A discrete PID controller has third order dynamics. Its structure is defined by

CPID(q) = q−1
(

kI
q

q − 1
+ kP + kD

q − 1
q

)
, (32)

where kI, kP, kD are the integral, proportional and derivative gains, respectively.
The first term is recognized from (5) as the “integral” part. In addition to this,
the PID controller has a proportional part kP and a “derivative” part; the latter is
recognized by the backward difference operator ∇ = (q−1)/q. The PI controller
is obtained as the special case kD = 0, in which case the order of dynamics is
two. The control map log h = CPID(q) · (log ε − log r̂) now implies the difference
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equation

1 log h = (kI + kP∇ + kD∇2) · (log ε − log r̂), (33)

which is equivalent to the recursion log hn+1 − log hn = kI(log ε − log r̂n) −
kP(log r̂n − log r̂n−1) − kD(log r̂n − 2 log r̂n−1 + log r̂n−2). Hence, the general PID
controller for adaptive time-stepping can be written

hn+1 =
(
ε

r̂n

)kI+kP+kD
(

ε

r̂n−1

)−(kP+2kD)(
ε

r̂n−2

)kD

hn. (34)

A PID controller is therefore a special case of (18) with α2 = α3 = 0. All proper-
ties of the controller, in particular its filter characteristics, are determined by
the parameters (kkI, kkP, kkD). They are related to the kβi through the involu-
tive parameter transformation kI

kP
kD

 =
 1 1 1

−1 −2
1


 β1
β2
β3

 . (35)

For the error transfer function, we find

Rϕ̂(q) = q2(q − 1)
q3 − (1− kkI − kkP − kkD)q2 − (kkP + 2kkD)q + kkD

, (36)

and note that, provided that kkI 6= 0, its numerator contains the forward differ-
ence operator 1 = q−1. From the definition of adaptivity order, it then follows
that every stable PID controller with kkI > 0 is first order adaptive. Hence,
integral action is necessary in order to have first order adaptivity. By (35), this
condition is equivalent to β1 + β2 + β3 > 0, which implies the (fully general)
condition P (1) 6= 0 already imposed on C(q) in Definition 2.5.

By (22) and (35), H311 PID controllers are given by the two-parameter family

hn+1 =
(
ε

r̂n

)3kI/4+kP/2( ε

r̂n−1

)kI/2( ε

r̂n−2

)−(kI/4+kP/2)

hn , (37)

while H312 PID controllers are given by the one-parameter family

hn+1 =
(
ε

r̂n

)kI/4( ε

r̂n−1

)kI/2( ε

r̂n−2

)kI/4

hn. (38)

Good parameterizations are found by studying the stability region in the
(kkI, kkP) plane, see the left diagram of Figure 8. For the H312 PID controller,
the closed loop is stable for kkI ∈ (0, 4/3). Useful controllers are however found
in a much smaller interval near kkI = 0.2, and we recommend the particular
value kkI = 2/9, which effectively minimizes the magnitude of the poles. Due to
its second order stepsize filter, this controller has a high ability to quench (−1)n

oscillations, as demonstrated in Figure 9. The repeated averaging is clearly rec-
ognized in the coefficients of (38), and in view of (2) the naive parameter choice
would be kkI = 1. But the poles would then be complex and exceed 0.9 in mag-
nitude. A simple time domain simulation would quickly put such a controller
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Fig. 8. Closed loop stability regions in the (kkI, kkP) plane for first order adaptive H311 PID (left)
and second-order adaptive H321 predictive PID controllers (right). Level curves enclose stable con-
trollers with closed-loop poles of maximum magnitude 1, 0.95, 0.9, . . . . H211 controllers (left) that
are PI controllers (i.e., kkD = 0) are found on the dashed straight line. Stable H312 PID controllers
(left) are found on the solid straight line corresponding to pF = 2. Stable H322 controllers do not
exist, however (right), as the pF = 2 line (dash-dot) does not intersect the stability region. For
closed-loop stability, as well as for adaptivity, kkI > 0 is always necessary.

Fig. 9. Closed loop stepsize sequences show a 100-step simulation when log ϕ̂ consists of an initial
jump and a smooth sinusoidal component onto which a (−1)n oscillation has been superimposed.
From step 50 onwards, this oscillation is amplitude modulated by a quasi-periodic signal. The top
graph shows stepsize output from elementary deadbeat control (2); lower graph shows output from
an H312 PID controller with kkI = 2/9: the second-order filter has completely removed (−1)n

oscillations, but the sudden onset of amplitude modulation causes a barely visible kink after step
50. The controller also shows a slight phase lag.

out of practical use, and the idea of using repeated averaging would fall in dis-
repute. The less conventional starting point of digital filter theory is necessary
to find a proper parameterization.

Among H311 PID controllers, there are also H211 PI controllers, see
Figure 8. The choice kkI = 1/3, kkP = −1/6 produces nearly minimal poles
located at q = 1/2 and q = 1/3. The corresponding parameterization kβ1 =
kβ2 = 1/6 is located just above the caustic line in Figure 5. This controller’s
stepsize low-pass filtering is slightly stronger than for the H211b with b = 4.
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6.2 Second-Order Adaptivity

Second order adaptivity requires a prediction of the evolution of {logϕn}. Predic-
tive controllers based on a PI control structure were considered in Gustafsson
[1994] and reviewed in Söderlind [2002]. Here, we extend that approach to
predictive controllers based on a PID control structure and introduce

CPC(q) = 1
q − 1

(
kI

q
q − 1

+ kP + kD
q − 1

q

)
, (39)

with the necessary double integral action included. This leads to the difference
equation log h = CPC(q) · (log ε − log r̂), corresponding to the stepsize recursion

1(∇ log h) = (kI + kP∇ + kD∇2) · (log ε − log r̂), (40)

which is a PID controller for the stepsize ratio ∇ log hn = log(hn/hn−1), cf. (33).
The predictive PID controller can therefore be written

hn+1 =
(
ε

r̂n

)kI+kP+kD
(

ε

r̂n−1

)−(kP+2kD)(
ε

r̂n−2

)kD hn

hn−1
hn. (41)

For convenience, we keep the parameter notation unchanged although there
are major differences compared to the conventional PID controller; there is
now a double integral, a single integral, and a proportional part, but no deriva-
tive part. The predictive PID controller still has third-order dynamics. As a
counterpart to the case of PID control, one finds that the error transfer func-
tion contains the second order difference operator 12 = (q − 1)2, provided that
kkI 6= 1. Thus, every stable predicitive PID controller with kkI > 0 is second
order adaptive.

As the free parameters enter (34) and (41) in exactly the same way, conditions
for first and second order filters at q = −1 remain unchanged. The stability
region in the (kkI, kkP) plane is shown in the right diagram of Figure 8. We
note in particular that the only intersection between the stability region and
the pF = 2 line is kkI = kkP = 0, that is, for predictive PID controllers, stable
second-order filters at q = −1 do not exist; the class H322 is empty. Only first-
order stable filters can be found. The H321 predictive PID controllers form a
two-parameter family

hn+1 =
(
ε

r̂n

)3kI/4+kP/2( ε

r̂n−1

)kI/2( ε

r̂n−2

)−(kI/4+kP/2) hn

hn−1
hn. (42)

A good parameterization is (kkI, kkP) = (0.1, 0.45), but as the maximum mag-
nitude of the poles is 0.7325, the response of this controller is somewhat slower
than of the H321 controller of Section 5.3; the frequency responses are however
very similar.

7. TIME DOMAIN SIMULATIONS

Time domain simulations are important as a complement to the theoretical
investigations of a controller’s properties. In particular, it is necessary to verify
that the special properties are also observed in practice. In order to compare
controllers, it is also necessary to arrange reproducible simulations that provide
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different controllers with exactly the same input or computational situation.
(This is not possible if the controllers are tested inside an ODE solver.)

The time domain simulations have therefore been arranged as follows: The
external disturbance sequence log ϕ̂ is modeled as composed of a deterministic
part, the signal, and a superimposed, additive noise. The signal is assumed to
be a continuous function logψ(t), but the noise is modeled as “events” related
only to the step number. The noise consists of a N (0, 1) sequence, a sequence of
random numbers with rectangular distribution in [−1, 1], normalized to have
unit standard deviation, and finally a (−1)n oscillation. These three noise com-
ponents are added in the proportions 4 : 2 : 1 to create the noise sequence
{log νn}. A number of such sequences have been recorded and some have also
been processed by a convolution filter to change their spectral properties.

In this way, a large variety of log ϕ̂ sequences have been generated, for se-
lected amplitudes A, as log ϕ̂n = logψ(tn) + A · log νn for tn = tn−1 + hn, where
{hn} is the actual stepsize output generated by the individual controllers. It
is then possible to discern whether different controllers proceed through the
time-stepping at different rates. If necessary, this construction also makes it
possible to generate identical data sequences by sampling the signal logψ(t) at
exactly the same points even when the controllers generate different stepsize
sequences.

Naturally, only a few simulations can be reported here, and we have chosen to
focus on comparative tests of the controllers, in particular as regards enhanced
stepsize sequence smoothness, whether the price in terms of increased low-
frequency control errors is acceptable, and whether the different controllers on
average use equally large stepsizes. For this purpose, we have chosen to use
only one signal, which, at times, forces fairly quick stepsize changes, for all
tests. We have also selected a single noise sequence, but its amplitude varies
depending on the class of controllers and their ability to regularize the stepsize
sequence. Startup strategies and stepsize rejections have not been included;
the latter is particularly important as we want to study the control errors and
how close to the setpoint the different controllers are able to stay.

The stepsize is plotted as a function of the step number; the graphs end
prematurely as the simulation only covers the necessary number of steps to
reach from t = 0 to t = 55. This verifies that the different controllers are
equally competitive in terms of average stepsize.

The graphs shown in Figures 10–12 confirm that controllers based on step-
size low-pass filters have a significant noise suppression and regularizes the
stepsize sequence. The price is an increased control error, in particular as re-
gards low-frequency content. This implies that it may be necessary to use dif-
ferent values of the safety factor θ in the setpoint ε = θ · TOL to prevent frequent
step rejections in practical use. As the required head-room in practice depends
on the noise level as well, we consider this factor to be part of the controller
choice, when a special class of problems such as, for example, stochastic ODEs
is approached.

The controllers with strong low-pass filtering show larger control errors.
Even with a pure signal without noise, the high-order filters will exhibit a
setpoint deviation incurred by the signal alone. This indicates that for a smooth,
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Fig. 10. Time domain simulation with first-order adaptive controllers. Stepsize outputs h (left)
and error sequences log(r̂/ε) (right) are plotted vs. step number for t ∈ [0, 55], when log ϕ̂ is a
smooth, varying signal with additive noise. All controllers take 94 steps to reach t = 55. From
top to bottom: elementary H0110 deadbeat; H0211 deadbeat; H211b with b = 4. The successively
improved stepsize smoothing is evident. The error is also smoother but low frequencies have an
increased amplitude. As predicted by error frequency response graphs, the H211b has the largest
error deviations from the setpoint log ε (right).

Fig. 11. Time domain simulation with second-order adaptive controllers. Stepsize outputs h (left)
and error sequences log(r̂/ε) (right) vs. step number for t ∈ [0, 55], when log ϕ̂ is a smooth, varying
signal with additive noise. All controllers take 93 steps to reach t = 55. From top to bottom:
H0220 deadbeat; H0321 deadbeat; new H321 controller with poles at q = 1/3, 1/2, 2/3. The setup
is identical to that in Figure 10, except that the amplitude of the input noise sequence has been
reduced by a factor of 2 as H0220 has roughly twice the noise amplification of H0110. For the
deadbeat controllers the second order adaptivity implies that control errors are kept close to the
setpoint, but increasing low-pass filtering increases control errors, and the nondeadbeat H321 has
+15 dB (a factor of 6) more low-frequency control error than H0321, see also Figure 3.
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Fig. 12. Time domain simulation with first-order adaptive controllers. Stepsize outputs h (left) and
error sequences log(r̂/ε) (right) vs. step number for t ∈ [0, 55], when log ϕ̂ is a smooth, varying signal
with additive noise. All controllers take 95 steps to reach t = 55. From top to bottom: elementary
H0110 deadbeat; H312b with b = 8; H312 PID control with kkI = 2/9. The setup is the same as
in the previous experiments but noise amplitude has been doubled as the two lower controllers
have second order stepsize low-pass filters. The control error is fairly large as the strongly filtering
controllers also smooth the signal’s turns and corners. Even if the spectral content of the control
errors is entirely different compared with H0110, the peak-to-peak control error amplitude is still
fairly moderate in simulations employing stepsize low-pass filtering.

noise-free problem, one should at most use moderate low-pass filtering. For
substantial noise levels, however, the objective of adaptive time-stepping is to
extract signal trends, and strong filtering may be required.

8. ERROR FILTERING AND STEP REJECTION

Although the peak-to-peak amplitude of low-frequency control errors displays
a fairly moderate increase, a reorganization of the order in which filtering and
control is applied may have a significant impact on the decision of whether a step
can be accepted or not. In particular, this concerns the choice of the safety factor
θ in the setpoint ε = θ · TOL. We have also seen that stepsize low-pass filtering
precludes error low-pass filtering, but the error sequence can nevertheless be
affected. In the former case, we may use control error filtering, and in the latter
error sequence filtering.

8.1 Control Error Filtering

By using the factorization

C(q) = 1
q − 1

P (q)
Q(q)

(43)

of the general controller we can split its action into a filter part P (q)/Q(q) and
a single integral control action 1/(q − 1). We then write the control in the form
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Fig. 13. Control error filtering. The controller C(q) = P (q)/Q(q)/(q − 1) is split into a filter
P (q)/Q(q) and a single integrating controller 1/(q − 1). The filter is applied to the control er-
ror before the summation operator corrects the stepsize log h. The filtered control error log ρ is
significantly smaller and smoother than log ε− log r̂. Step rejection is then based on the controller’s
suggested stepsize change (i.e., the stepsize ratio ρ) rather than on control error magnitude. Overall
stepsize, error and filter characteristics are unaffected.

hn+1 = ρnhn with

ρn = (ε/r̂n)β1 (ε/r̂n−1)β2 (ε/r̂n−2)β3 ρ
−α2
n−1 ρ

−α3
n−2, (44)

where log ρ is considered to be the filtered control error, see Figure 13. Although
(44) is equivalent to (18), the difference is that by using logρ to test whether
the step should be rejected or not, it is possible to significantly reduce the risk
of rejections caused by high-frequency content in the error; due to the filtering,
log ρ is considerably smoother and smaller than log ε − log r̂ as high-frequency
noise has been removed, see the time domain simulation in Figure 14. The test
for rejection then becomes a matter of whether a proposed stepsize change ρn,
given the method order k, can be considered normal. This may be preferable to
basing a rejection decision on a noise contaminated error—recall that if step-
size filtering is employed, the error log r̂ accommodates the major part of the
noise.

8.2 Error Sequence Filtering

Another reason to modify the rejection criterion is to better reflect the propa-
gation of global errors. For nonstiff error components, the simplest global error
propagation model is en+1 = (1+ hnµ)en + rn, or, for constant steps,

qe = (1+ hµ)e + r ⇒ e = r
q − (1+ hµ)

. (45)

For |hµ| ¿ 1 or if hµ is small and negative, but not negligible, the recursion
acts as a convolution filter that attenuates high frequency noise in the error;
frequency response is similar to a first order integrating controller’s response,
which is just the inverse (the negative) of the H0110 error frequency response,
see the right graph in Figure 2. Hence, lower frequencies dominate the global er-
ror (which is unbounded for ω = 0 when hµ = 0), and the higher the frequency,
the stronger is the attenuation in the map r 7→ e. This also holds for stiff com-
putations if an L-stable method is used. In other words, high frequency content
in the local errors can be expected to have a relatively minor effect on the global
error, and a step-rejection decision should rather be based on an error from
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Fig. 14. Control error filtering. This time domain simulation, using H312b with b = 8 and k = 4,
is identical to that in the middle graph of Figure 12. The top graph shows unfiltered control error
sequence log(ε/r̂) (solid) and filtered control error sequence log ρ (dashed) vs. step number. The
middle graph shows stepsize ratios ρ. In spite of considerable noise and the strong correlation with
log(ε/r̂), stepsize changes rarely exceed ±5%. The lower graph shows stepsize output.

Fig. 15. Error sequence filtering. The controller C(q) is split into a filter F (q) with F (1) = 1 and the
remaining controller C(q)/F (q), by putting the averaging part of the stepsize transfer function into
F (q), for example, (q + 1)/(2q) for the H321 controller. The filter is applied to the error estimate,
producing log r̃ = F (q) log r̂ before correcting the stepsize log h. The filtered control error log ε−log r̃,
on which step rejection is based, is smoother than log ε − log r̂ without affecting overall stepsize,
error and filter characteristics.

which high-frequency content has been removed. It is therefore worthwhile to
consider error sequence filtering as shown in Figure 15, as an alternative to
the straightforward implementation of filter-based controllers. Error sequence
filtering has a rather small effect apart from removing top frequencies from
log r̃, see Figure 16. This implies that it can be considered to be a standard way
of implementing filter based controllers.
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Fig. 16. Error sequence filtering in H321 controller. Stepsize (left), error (center) and filtered error
frequency response (right) for H321, with F (q) = (q + 1)/(2q), show that the filtered error log r̃ is
similar to log r̂ except that top frequencies are removed to create a smoother control error.

Table III. Recommended Controllers with Stepsize Low-Pass Filters and their Problem Classes

kβ1 kβ2 kβ3 α2 α3 Class Problem type

1/2 1/2 1/2 H0211 smooth to medium
1/b 1/b 1/b H211b medium to nonsmooth
1/6 1/6 H211 PI medium to nonsmooth
1/4 1/2 1/4 3/4 1/4 H0312 medium
1/b 2/b 1/b 3/b 1/b H312b nonsmooth

1/18 1/9 1/18 H312 PID nonsmooth
5/4 1/2 −3/4 −1/4 −3/4 H0321 smooth
1/3 1/18 −5/18 −5/6 −1/6 H321 medium

9. CONCLUSIONS

The single assumption on the computational process is that the stepsize—error
relation of a time discretization method is accurately described by the asymp-
totic model r̂n = ϕ̂nhk

n. Using elementary digital filter theory, the article has
shown how to construct stepsize and error filter associated with a general con-
trol structure that covers all linear controllers of third-order dynamics.

Order conditions for adaptivity, stepsize and error low-pass filtering are
given, and the proper parameterization is studied with respect to stability,
frequency response, regularization and time domain simulations. The simu-
lations verify that the controllers with stepsize low-pass filters generate much
smoother stepsize sequences. The controllers are simple, and do not incur extra
computational costs, neither in themselves nor in their control performance, as
they all use stepsizes of the same average magnitude.

Table III presents a number of new controllers based on this theory, and
the classes of problems for which they can be expected to do well. The terms
“smooth,” “medium” and “nonsmooth” are used in a relative sense to indicate
which new controller to select if stepsize sequences are nonsmooth or if control
errors appear too large. A more precise definition of problem properties would
require a detailed study of noise power spectra.

For a full implementation of the above controllers, several things need to
be considered. First, as they are third-order dynamical systems, the process
cannot start with back data missing. This implies that a starting procedure is

ACM Transactions on Mathematical Software, Vol. 29, No. 1, March 2003.



Digital Filters in Adaptive Time-Stepping • 25

needed, just like for PI controllers [Gustafsson 1991]. Another need for such a
procedure is after repeated rejected steps; the asymptotic model might then no
longer hold, and the present state of the controller is of little value, implying
that back data will have to be discarded. In addition, at large discontinuous
input, the controllers may react with large transients. This implies that safety
nets in terms of logic are needed; this should also take care of situations where
drastic stepsize reductions are called for, before the controller can be restarted.
A startup should consist of a purely integrating controller, say of gain kβ1 = 0.7,
which is reduced on the following steps until sufficient data are available for
the pD > 1 controllers to run on their own.

Second, for increased robustness it is common to employ limiters that pre-
vent divide by zero as well as unrestrained stepsize increases or decreases.
This is a nonlinearity which can be designed without discontinuities and so
that the normal control action is not disturbed. It still incurs a change in
the controller’s state, which may have to be compensated by anti windup
[Åström and Wittenmark 1990], to preserve the controller’s ability to control the
process.

Finally, there is the possibility of implementing the controller using error
sequence or control error sequence filtering. In all, a controller for full use in an
ODE/DAE/SDE solver is a separate piece of software that should be carefully
analyzed and implemented, but individual implementations of the different
controllers are not necessary. A general implementation follows the same lines
as those indicated by the pseudo codes in Gustafsson [1991, 1994], but details
and aspects of implementation will be studied and evaluated elsewhere.
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