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ABSTRACT:Using an ordinary differential equation model which de-
scribes the interaction of the immune system with the human immun-
odeficiency virus (HIV) we solve for an optimal chemotherapy strat-
egy. The control represents the percentage of effect the chemotherapy
has on the viral infectivity (this would simulate a drug such as AZT).
Using an objective function based on a combination of maximizing
benefit based on T cell counts and minimizing the systemic cost of
chemotherapy, we solve for the optimal control in the optimality sys-
tem composed of three ordinary differential equations and three ad-
Joint ordinary differential equations. This optimal control corresponds
to a dynamical chemotherapy regime.

Key Words. Chemotherapy, HIV, optimal control, ordinary dif-
ferential equation system.
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1. INTRODUCTION.

Different chemotherapies for treating patients with the human immunod-
eficiency virus (HIV) are being tested to find an optimal methodology for ad-
ministering the treatment. We present an ordinary differential equation model
which describes the interaction of the immune system with HIV. We investigate
chemotherapy through the use of an optimal control, assuming the chemother-
apy control effects the “infectivity”of the virus. In [Kirschner et al.(1996)],
a similar problem was studied whereby the chemotherapy reduced viral pro-
duction rather than viral infectivity; however, it was more applicable to drugs
such as protease inhibitors rather than AZT, which is a reverse transcription
inhibitor. During the life cycle of HIV within a host cell, each of these enzyme
inhibitors interrupts key stages of the infection process. There is much support
in the clinical literature for the use of reverse transcriptase inhibitors [Cox et
al.(1990), Fischl et al.(1990), Hamilton et al.(1992), Hirsch(1990), McLeod et
al.(1992)]. We explore in this paper the chemotherapy of a reverse transcrip-
tase inhibitor such as AZT.

This paper deals specifically with the question of optimizing treatment
scheduling; i.e., when and how treatment should be initiated assuming that
treatment can only be continued for a finite interval, the average time until drug
resistance develops [Nara et al.(1990)]. We base the ‘benefit’ of treatment solely
on an increase or retention of the CD4* T cell count [Conner et al.(1993)].
To this end, we introduce a model which describes the interaction of HIV
with the immune system. We then present the optimal control problem in
which the coefficient of the viral production term is the control, resulting from
chemotherapy. We seek to maximize the objective function, which is the benefit
based on T cell counts less the systemic cost of chemotherapy. The optimal
control is characterized using Pontryagin’s Maximum Principle. We utilize
the representation of the optimal control and solve numerically the optimality
system — which is defined as the original state system coupled with the adjoint
system. In conclusion, we discuss the results of the numerical simulations ax
treatment initiation is varied.

The Model. A number of works have been done using mathematical mod-
els for modeling drug treatment in different settings: [Agur(1989), Beretta and
Solimano(1993), Kirschner et al.(1996),Kirschner and Webb(1996), McLean
and Nowak(1992), Perelson et al.(1993)]. Let T denote the concentration of
uninfected C D4+ T cells, and let T* denote the concentration of infected CD4*
T cells. The concentration of free infectious virus particles is V. Here, concen-
tration refers to the population number per unit volume, mm=3. Definitions
and numerical information for the parameters can be found in Table 1. We
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assume that the dynamics of the various populations are:

dr s (T +T)
= _ T X)) VT
(1) o 5V wmT +rT (1 T ) 1V
dT* ;
(2) dt = kl VT — I.L2T
dv ~
(3) = = Np2T" = psVT
with initial conditions T'(0) = Ty, T*(0) = T§, V(0) = V,.
In (1), 1 j % is a source term from the thymus and represents the rate of

generation of new CD47 T cells [Kirschner, Mehr and Perelson(1996)]. The T
cells are also assumed to have a finite life-span and die with rate u; per cell.
In (2), infected T cells have the natural death-rate, uy, although other factors
can augment the natural death-rate. In (1), r represents the growth rate of T
cells (per day), which is presented as a logistic-type term, so the T cells never
grow larger than T ,,x.

The other terms in (1) and (2) deal with the effects of HIV. The term
k1 VT models the rate that free virus V infects CD4%T cells. Once a T cell
has been infected, it becomes an infected T cell, thus this term is subtracted
from (1) and added to (2).

Equation (3) models the free virus population. We assume that when
an infected CD4% T cell becomes stimulated through exposure to antigen,
replication of the virus is initiated and an average of N viruses are produced
before the host cell dies. The term, —u3V, accounts for viral loss through
death and/or immune clearance. Similar models of HIV infection can be found
in [Kirschner and Perelson(1994), Kirschner and Webb(1996), Perelson(1989)).

Since drugs such as AZT reduce viral infectivity, we multiply the k; VT
term in equations (4) and (5) by a chemotherapy function, u(t), to achieve this
affect mathematically.

2. OrPTIMALLY CONTROLLING CHEMOTHERAPY.

Our control represents the percentage of effect the chemotherapy has on
the interaction of T cells with the virus. The control for the chemotherapy,
u(t), multiplies the parameter k; in equations (1) and (2). Therefore, we choose
as our control class, measurable functions defined on [tstart, tfinai], with the
restriction 0 < u(t) < 1. The finite interval of treatment is necessary since we
assume the chemotherapy only has a window of allowable treatment. This is
due to the fact that HIV has the ability to mutate and develop resistance to
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the chemotherapy treatment after some finite time frame [Nara et al.(1990)].
Also, the treatment has potentially harmful side effects, and these side effects
increase with duration of treatment. Therefore, for 510t < t < tfinar (Where
for most of the HIV chemotherapy drugs, tfinal — tstart < 2 years), the state
system would be:

dT s (T + Ti)>
4 —_ = - T+rT |1 - ———= ) —-u(lt)lb VT
(4) ad 1+v M ( T &)y
dT" :
(5) prale u(t)k VT — po T
dv .
(6) -Et- = 1\7/.1,21."l - /.L3TV

with given initial values for T, T%, and V at tstart.

Define the objective function
t}inal 1
) J(u) = / [T(t) - EB(I — u(t))?| dt.
tatart

In words, we are maximizing the benefit based on the T cell count, and mini-
mizing the systemic ‘cost’ of chemotherapy to the body based on the percentage
effect of the chemotherapy given (i.e. (1 — u)); hence, we are maximizing the
difference. If the control u(t) = 0 corresponds to maximal use of chemother-
apy, then the maximal cost is represented as (1 — u(t))?. We assume that the
relationship between the benefit to cost functionals is not linear, and hence,
we choose a simple non-linear control in the cost term. The parameter B > 0
represents the desired ‘weight’ on the benefit and cost. The goal, therefore is
to characterize the optimal control u* satisfying Jmax J(u) = J(u*).

Define the Lagrangian (which is the Hamiltonian augmented with penalty
terms for the constraints) to be:

(8)

L(T(2), T*(2), V(2), ult), M(2), A2(t), As(?))

=T(t) - 3B(1 - u(t))? »

+A1 (1—_:—‘; — T +rT (1 - ‘77::—::)-) - u(t)k1VT)

+F2(u(t)k1VT — poT*) + A3(NpoT* — paV) + w1 ()u(t) + wa(t)(1 — u(t)),
where w; (t) > 0,ws(t) > 0, are the penalty multipliers satisfying w, (t)u(t) =
0, and wo(t)(1 — u(t)) = 0. Thus, the Maximum Principle [Kamien and
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Schwartz(1991)] gives the existence of adjoint variables satisfying:
(9)

d\ oL 2T + T
-d—tl = —-éf - — [1 + M\ (—;1.1 +r (1 — (—Tm;——)-) — u(t)le) + Agu(t)le] ,
(10)

dy 0L AT

dt 0T T

+ Agp2 — A3Npg,

)
dA3 _ oL _ S ’
% =5 = (i + 9ORT) T + s

where A;(tfinat) = 0 for i = 1,2, 3 are the transversality conditions. Since,

L = (—%B(l - u(t))z) + A (—u(t)k1 VT) + Ao (u(t)k1 VT) + wy (t)u(t)
+wgy(t)(1 — u(t)) + terms without u,

differentiating this expression for L with respect to u gives:

oL
5{2 = k]VT(Az - Al) + B(l - u) + wl(t) - ’wz(t) =0.
Solving for the optimal control yields
u*(t) _ (A2 — Al)k1VT + wl(t) - 'wz(t) + B
B .
Consider 3 cases in examining the expression for u*:
(i) On the set {t|0 < u*(t) < 1} : w;y(¢) = wz(t) = 0, hence the optimal
control is:

(A2 — M)k VT + B
B

(ii) On the set {tju*(t) = 1} : wi(t) = 0,w2(t) > 0, hence u*(t) = 1 =
A2 = M)k VT — wa(t
(2 — A1) 5 w2(®) | 1, which implies 0 < wa(t) = (Ae — M)k VT,
(Ag — A])k]VT-!-B

u*(t) =

and 1 < B
(iii) On the set {t|u*(t) = 0} : wa(t) = 0, w;(t) > 0. Hence, the optimal
control is:
u(t) = (A2 = M)k VT + wy (2) + B _o.

B
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(A2 — \)kVT + B

Therefore, wq(¢) > 0 implies that < 0, which implies

B
’ +
ut(t) = ((/\2 M)kVT + B) _o.
B
Combining these 3 cases, the optimal control is characterized as
+
(12) u* = min (((/\2 Mk VT + B) ,1)
B
where
(Qg_xl)k,vr+3)+ [ PP Qe - M)k VT +B>0 |
B 0 if (A2 —M)KVT+B<0

If (A2 — A1) < O, for some ¢, then u*(t) # 1. Hence 0 < u*(t) < 1 for
those t, which implies treatment should be administered. Notice the control
depends on the adjoints A; and A, since those adjoints correspond to the state
variables T' and T*; and the first two state equations contain the control terms.
The optimality system is formed by the state system (4)—(6) coupled with the
adjoint system (9)-(11) with corresponding initial/final time conditions and by
substituting in the expression (12) for u* in equations (4), (5), (9), and (11).
Solving the optimality system with (12) for u*, characterizes the dynamic
optimal control. Note that the existence and uniqueness of the optimal control
can be obtained by standard results [Flemming and Rishel(1975)]. We obtain
the explicit characterization for u* in (12).

3. NUMERICAL RESULTS.

In order to solve the optimality system, we need initial values for the T
cells, infected T cells, and the virus. We solve the model (1)—(3) without
chemotherapy treatment to get these initial values. The numerical results
of the model (1)—(3) were created using MATLAB, and were used to find
starting values for different treatment initial conditions. Using a collocation
code COLNEW (obtained via NETLIB), the optimality system was solved.
The optimality system, is a two-point boundary value problem due to the state
system initial data and adjoint system final time data. Included are graphs
that represent the solution to the optimality system (4)-(6) coupled with (9)-
(11) at different treatment initiations (i.e. different initial data for (4)—-(6))
(See Figures 1-4, Section 6). The parameters used in solving (1)-(3), (4)-(6),
and (9)—(11) were obtained from [Kirschner et al.(1996)], and are summarized
in (Table 1, Section 6).

(Table 2, Section 6) summarizes the numerical results of solving the op-
timality system for different simulations. The J values are presented for the
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benefit functional (7) for each simulation. Treatment was simulated for 100
days in each case. Information for Figures 1-4 is presented, and we also give
information about other simulations (runs 5-11), without figures, for brevity.
We vary initial conditions and values of B to gain insight into the optimality
system.

4., DISCUSSION.

We have used an optimal control theory paradigm to model HIV chemother-
apy. Our approach uses an existing model for the interaction of HIV with the
immune system and then includes a chemotherapy control as a way to sup-
press viral infectivity, k;. We use methods of optimal control to determine the
optimal dynamic control analytically, then use numerical methods to simulate
different outcomes.

Numerical results indicate that the optimal chemotherapy is a dynamic
one, in which treatment is adjusted over the long course of administration
whereby one begins with a strong dosing scheme, followed by a lessening of
treatment (either by drug dosing or strength).

We can also draw from the control problem that the dynamic optimal
chemotherapy does not correspond to a regime where treatment is 100% ef-
fective, 100% of the time. Rather, if treatment is strong at the outset, and
then gradually lessens in strength over time (whether because of a change in
dosage or other effects), it is still effective in balancing the benefit to T' cells
and systemic costs. This is seen, in particular, with drug treatments such as
AZT and DDT [Volberding et al.(1990)].

Exploring initiation of treatment, Table 2 compares the values of the objec-
tive function, J at the optimal control u*. There is not a significant difference
between the presented scenarios; however the greatest effect of treatment does
occur when treatment is initiated earliest — i.e. when T cell counts are highest,
after the onset of infection. The recovery of T cells to larger values makes
the biggest difference late in infection after the T cells have begun to decline
significantly; but balanced with the effects of drug cost, the earlier initiated
treatment is optimal. Also, a lower value of B implies the systemic cost is
lower, and the optimal u* results on a higher value of J*, the objective func-
tional evaluated at the optimal control.

The results presented here do not depend on the treatment duration.
When comparing different treatment intervals, the results are the same; namely,
that the earlier treatment is better no matter what the length of the treatment
interval in this early scenario.

The model studied here is a simple one, and further studies need to be
done to incorporate a more accurate model of the immune system and such
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things as direct pharmacology for combined drug treatments together with the
resistance effects. This model and the analysis presented here provide a simple
framework for the testing and development of such models which can lead to
new and improved chemotherapy strategies.

Finally, it is worrisome that early treatment of HIV infection with drug
chemotherapy may, and usually has, led to drug resistance. This, of course,
will reduce the time period over which therapy can be administered. New
research suggests combination drug treatments are preferred since there is a
reduced chance of the virus mutating simultaneously to be resistant to all of
the drugs present in the ‘cocktail’{Hirsch(1990); McLeod et al.(1992), Nara et

al.(1990), Volberding at al.(1990)]. We are presently exploring these phenom-
enon through a revised model.

s i
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5. FIGURES AND TABLES.
Table 1

Dependent variable Initial Values

T = Uninfected CD4*T cell population 1000 mm—3
T* = Infected CD4*T cell population 0.0
V = Infectious HIV population 1.0 mm—3

Parameters and Constants

p1 = death rate of uninfected CD4*T cell population 0.02 d~!
p2 = death rate of infected CD4*T cell population 0.5 d™!
ps = death rate of free virus 4.4 d1

k1 = rate CD4*T cells become infected by free virus 2.4 x 10~5mm3d—1

r = rate of growth for the CD4*T cell population 0.03 d—1

N = number of free virus produced by T* cells 300

Trmax = maximum CD4%T cell population level 1.5 x 103mm—3

s = source term for uninfected CD4*T cells 10 d 'mm—3
Table 2

Output Day B To T§ Vo J*

Figure 1 21 10 8064 0.04 1.5 93,561
Figure 2 26 10 766.5 0.1 1.5 93,296
Figure 3 37 10 684.0 0.14 29 88,088
Figure 4 74 0.005 4943 004 1.6 80,566
Run 5 54 5 580.0 0.17 2.9 83,535
Run 6 54 10 580.0 0.17 2.9 83477
Run 7 45 10 630.8 0.18 3.4 85,671
Run 8 74 1 4943 0.04 1.6 80,554
Run 9 76 1 488.3 0.03 14 80,412
Run 10 86 1 463.5 0.01 0.8 79,607
Run 11 74 0.05 4943 0.04 1.6 80,566

Day: Number of days since the onset of infection

B: weight ratio of benefit to cost of objective function J.

To, T§, Vo: Initial conditions at Day of treatment initiation

J: Objective function value , J* = J(u*), evaluated at the optimal control
| (soe ean. (7)).
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Figure 1: Graph of the solution to the optimality system (4-6) coupled with (9-11).
The control, u* is defined in (2). Here we initiate treatment when the T cell count
was 806 per mm® for a treatment period of 100 days. Figure shows the following 4
graphs: Panel A: Uninfected T cells during treatment; Panel B: Infected T cells
during treatment; Panel C: Virus population during treatment; and Panel D: The

optimal chemotherapy, u°.
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Figure 2: Graph of the solution to the optimality system (4-6) coupled with (9-11).
The control, u* is defined in (2). Here we initiate treatment when the T cell count
was 766 per mm® for a treatment period of 100 days. Figure shows the following 4
graphs: Panel A: Uninfected T cells during treatment; Panel B: Infected T cells
during treatment; Panel C: Virus population during treatment; and Panel D: The
optimal chemotherapy, u".
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Figure 3: Graph of the solution to the optimality system (4-6) coupled with (9-11).
The control, u* is defined in (2). Here we initiate treatment when the T cell count
was 684 per mm? for a treatment period of 100 days. Figure shows the following 4
graphs: Panel A: Uninfected T cells during treatment; Panel B: Infected T celia
during treatment; Panel C: Virus population during treatment; and Panel D: The
optimal chemotherapy, u*.
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Figure 4: Graph of the solution to the optimality system (4-6) coupled with (9-11).
The control, u* is defined in (2). Here we initiate treatment when the T cell count
was 494 per mm? for a treatment period of 100 days. Figure shows the following 4
graphs: Panel A: Uninfected T cells during treatment; Panel B: Infected T cells
during treatment; Panel C: Virus population during treatment; and Panel D: The
optimal chemotherapy, u”.



