
Design of second order neural networks

as dynamical control systems that aim

to minimize nonconvex scalar functions

Fernando A. Pazos, Amit Bhaya and Eugenius Kaszkurewicz

August 12, 2011

Abstract

This article presents an unified way to design neural networks charac-
terized as second order ordinary differential equations (ODE), that aim
to find the global minimum of nonconvex scalar functions. These neural
networks, alternative referred to as continuous time algorithms, are inter-
preted as dynamical closed loop control systems. The design is based on
the control Liapunov function (CLF) method. For nonconvex scalar func-
tions, the goal of these algorithms is to produce trajectories, starting from
an arbitrarily chosen initial guess, that do not get stuck in local minima,
thereby increasing the chances of converging to the global minimum.

1 Introduction

Neural networks are typically analog circuit implementations of dynamical sys-
tems represented by ordinary differential equations (ODE). There has been a
revival of interest in analog or ordinary differential equations based methods
for optimization, dating from the seminal paper of Karmarkar and the subse-
quent boom in interior point and trajectory following methods (see, for example,
[1, 2, 3] and the references therein). In particular, some old proposals for ODE-
based methods have been revived recently and an objective of this paper is to
demonstrate that these methods, as well as some new methods, proposed herein,
arise in a natural manner by taking a control viewpoint.

Another connection of the present paper with the field of neural networks has
its origin in the well known backpropagation with momentum (BPM) method
used to solve the nonconvex problem of choosing the weights of a feedforward
artificial neural network. The paper [4] showed that the BPM method, which is
essentially steepest descent with momentum, for quadratic functions is a version
of the conjugate gradient (CG) method. In addition, the BPM method was
also shown to be a discretization of a continuous-time or ODE method for
minimizing nonconvex functions, known as the heavy ball with friction (HBF)
method, proposed by Polyak [5] and later studied in detail in [6, 7, 8]. A
continuous-time version of the CG method was also proposed in [4], and it will
be generalized and studied in detail herein.

Methods to solve different optimization problems arise in a unified and na-
tural manner by taking a control viewpoint. This control perspective was pre-
sented in [3, 9, 10]. In these references, the authors formulate the problem of

1



finding a zero of a vector function as that of designing a closed-loop system,
with a plant defined as the objective function, and with a static controller. The
overall closed loop system is modeled by a first-order ODE whose trajectories
converge to the desired zeros of the function. The choice of the feedback con-
troller is based on the control Liapunov function (CLF) method (detailed in
the present context in the book [3]), well known in control theory. This control
perspective offers powerful tools for the design and analysis of systems to solve
optimization problems.

Following this CLF methodology, this paper presents several second order
algorithms, adequate for implementation as neural networks, to minimize non-
convex scalar functions, where the words second order refer to the fact that the
closed-loop dynamics is described by a second order differential equation, and,
in the control perspective, this means that the controller is now dynamic instead
of static.

In order to proceed, consider a scalar function φ(x) : R
n → R, continuous

and with continuous partial derivatives, such that for all x ∈ dom(φ(x)), φ(x) ≥
φ(x∗) = φmin, i.e. the global minimum x∗ is assumed to exist and be finite, and
φ(x) tends to infinity when ‖x‖ tends to infinity in any direction. It is desired
to find x∗, by following an ODE trajectory that starts from some given initial
point x0.

The main motivation to use second order algorithms, instead of first order
ones, is as follows. It is well known that, for nonconvex functions, trajectories
x(t) starting at an initial point x(0) = x0 ∈ dom(φ(x)) generated by first
order gradient-type algorithms, converge to any point where the gradient of
the function is zero, even though this point may be a local minimum of the
function; using second order algorithms, the hope is that, with an adequate
choice of parameters (gains), trajectories are able to converge to the global
minimum of the function x∗. These ODEs are suitable for implementation as
neural networks.

Preliminary and partial versions of this work were first presented in [11] and
[12]. In [11], several second order ODE’s were interpreted and designed as closed-
loop control system using CLFs. The ODE’s studied in [11] were the heavy ball
with friction (HBF) method, the dynamical inertial Newton-like system (DIN),
proposed by Alvarez et. al. [13], and a continuous-time version of the conjugate
gradient (CG) method that was first proposed for quadratic functions in [4] and
generalized in [11]. In addition, other second order systems to minimize noncon-
vex scalar functions were also designed using the CLF method, by choosing of
different candidate Liapunov functions and with adequate choices of the plant
and the controller of the systems. In [12], a comparative study of some genera-
lizations of the HBF method proposed therein are outperformed on a suite of
standard nonconvex problems used in the literature on global optimization by
the continuous version of the CG algorithm.

All these methods and new ones can all be designed easily by the application
of the CLF method, including methods inspired by mechanical or other physical
analogies, but also going beyond these. Of course, this does not free the designer
from the necessity of carrying out numerical experiments to check the behavior of
the nets under the usual non-ideal circumstances of practical implementations.

2



2 Preliminaries: Motivation and CLF-based de-

sign

In optimization theory, it is well known that continuous-time trajectories ge-
nerated by gradient descent methods are able to converge to a local minimum
of a scalar objective function when it is continuous and has continuous partial
derivatives. Moreover, when this objective function is convex, the minimum is
unique and global.

In order to arrive at a natural motivation for the approach proposed in this
paper, first consider a continuous version of the steepest descent (SD) algorithm,
written as:

ẋ(t) = u (1)

u = −∇φ(x(t)) (2)

where u ∈ R
n and the gradient of φ is written ∇φ : R

n → R
n : x 7→ ∇φ(x).

The reason that (1) and (2) are written in this fashion is twofold: first, it is
clear that its trajectories will converge to local minima satisfying the necessary
condition ∇φ(x(t)) = 0 and second, in order to escape from confinement to
a local minimum, a more sophisticated choice of u (which is being thought of
as the control) is needed in order to drive x to the global minimum x∗ (φ(·)
is being thought of as defining the output of the controlled object or plant).
Thus, one possibility is that u must itself be subject to some dynamics and, if
this dynamics is chosen to be first-order, it immediately implies that the overall
dynamics will be a second-order ODE in x. In this manner, one is led naturally
to the introduction of second-order ODEs and the remaining question is how to
design u.

Assume that u has first-order dynamics, i.e., (2) is replaced by:

u̇(t) = ψ(x(t), ẋ(t)) (3)

Then, a natural CLF arises from the attempt to solve the so called regulation
problem, in which the reference signal is the global minimum value of the func-
tion φmin, and the output of the plant, φ(x), is to be driven to this value. This
is to be done by choice of the RHS ψ(x, ẋ) of the u-dynamics (3), also ensuring
that u goes to zero, so that the x-dynamics (1) converges to the desired global
equilibrium. In other words, a candidate control Liapunov function (CLF) can
be written as follows:

V (x,u) = φ(x) − φmin +
uTu

2
≥ 0 (4)

which is greater than zero for all x 6= x∗ or u 6= 0, V (x∗,0) = 0, and V (x,u) →
∞ as ‖x‖ → ∞ or ‖u‖ → ∞.

The time derivative of (4) is:

V̇ (x,u) = ∇φ(x)T ẋ + uT u̇ (5)

Equations (1), (3), (4) and (5) are the starting point for the CLF design
of new second-order ODEs by choosing ẋ and u̇ in (5) (respectively, the plant
dynamics and the controller dynamics in control jargon) so that V̇ (x,u) ≤ 0,

3



Figure 1: Block diagram of the second order closed loop control system

ensuring stability by the Liapunov’s direct method (see [14, c. 3]). The name
CLF is justified by the fact that V̇ is made negative by choice of the control or
u-dynamics, given some choice of the plant or x-dynamics.

Figure 1 shows a block diagram of the overall control system.
An important observation is that, although the global minimum value of the

function (φmin) occurs in the definition of the candidate CLF (4), it disappears
in its derivative (5), which is the crucial equation for the design. In other words,
knowledge of φmin is not required for the CLF design.

2.1 Related works

Second-order algorithms to minimize nonscalar functions are not very abundant
in the literature and this section briefly describes some of the existing ones.
The best known algorithm of the class of so called second-order algorithms is
the “heavy ball with friction” (HBF), already referred to in the introduction. It
was first introduced in [5] (also see [6],[13],[7],[8]) and can be represented by the
following second-order differential equation:

ẍ + γẋ + ∇φ(x) = 0 (6)

where γ is a positive scalar parameter.
In a mechanical analogy of (6), the HBF ODE represents a dissipative sys-

tem, the parameter γ being interpreted as viscous friction. As pointed out in [7],
the damping term γẋ(t) confers optimizing properties on (6), but it is isotropic
and ignores the geometry of φ. The second derivative term ẍ(t), which in-
duces inertial effects, is a singular perturbation or regularization of the classical
Newton ODE, which may be written as follows:

∇2φ(x(t))ẋ(t) + ∇φ(x(t)) = 0 (7)

where ∇2φ(x) denotes the Hessian matrix of the scalar function φ(x).
Note that, in this mechanical analogy made by Polyak, the candidate Li-

apunov function (4) can be interpreted as the mechanical energy of a ball of
unit mass rolling on a surface represented by the function φ(x) with a unitary
gravitational constant. The first term in (4) represents the potential energy,
while the second term in (4) represents the kinetic energy, where the velocity
u = ẋ is defined as in (1). Hence, if the constant γ in equation (6) is chosen
as zero, there is no friction term, and the mechanical energy remains constant
(hence V̇ (x,u) = 0 in (5)). With a positive friction parameter γ, the mechanical
energy decreases with the time (hence V̇ (x,u) < 0 in (5)). The proof will be
presented further in the following section.

4



Alvarez et al. ([13]), present a modification of the HBF algorithm, termed
“dynamical inertial Newton-like system” (DIN). The modification consists of
the addition of a spatial damping term, in addition to the existing temporal
one:

ẍ + aẋ + b∇2φ(x)ẋ + ∇φ(x) = 0 (8)

where a and b are positive scalar parameters. The authors note that HBF is a
better version of the Newton algorithm, and when the function φ(x) is convex,
trajectories converge quickly to the global minimum. However, the trajecto-
ries generated by HBF can present spatial oscillations, which are damped by
the term b∇2φ(x)ẋ in the DIN algorithm, even when the Hessian is degenerate
([13]). Hence, trajectories generated by this algorithm could have better be-
havior in the sense of converging faster to the minimum of the function. In a
similar direction, DIN can be viewed as a second-order inertial relaxation of a
Hessian-type preconditioned gradient method for the local minimization of an
objective function (see [15]).

Cabot ([8]), proposes the following second order dynamical system:

ẍ + γẋ + ∇φ(x) + ǫ(t)∇U(x) = 0 (9)

where γ is a positive scalar parameter, ǫ(t) is a positive scalar function that tends
to zero when t tends to infinity, and U(x) is a positive scalar cost function.

The author demonstrates that if φ(x) and U(x) are convex, then the tra-
jectories generated by (9) converge to a minimum of U in the set argmin(φ),
assuming that this set is non empty. The application of this algorithm is the
following: if φ(x) is convex and the set argmin(φ) is convex, the problem be-
comes a particular case of a convex optimization problem, where the feasible set
can be defined as χ = {argmin(φ(x))}, and which can be described as:

min U(x)
s.t x ∈ argmin(φ(x))

The Heavy Ball idea, without friction, was taken up by Snyman and Fatti
[16], who reevaluated the method in [17]. Since they used inertial frictionless
(gradient) descent, they proposed random initialization from multiple starting
points, as well as a heuristic technique to modify the trajectories in a man-
ner that ensures, in the case of multiple local minima, a higher probability of
convergence to a lower local minimum than would have been achieved had con-
ventional gradient local search methods been used. Shimizu et al. [18] used the
HBF ODE, but proposed an additional “attraction-repulsion” spring-like term
to modify trajectories and introduce chaotic dynamics to favor convergence to
the global minimum.

Other methods that are based on the continuous-time steepest descent and
use other local minima escape strategies such as “subenergy tunneling” and
“terminal repellers” [19, 20, 21] are less directly related to the HBF method.

Other continuous-time global search methods for solving unconstrained non-
linear optimization problems, not necessarily based on second order ODE’s, can
be found in [22, c. 3], [23], [24], [25], [26], [27] and [28].

A complete review about recent advances in global optimization can be found
in [29].

The conjugate gradient (CG) method is a well known discrete algorithm
applied to unconstrained optimization. It is commonly used to minimize scalar

5



convex quadratic functions. In the control perspective, the CG method can be
viewed as an acceleration of the steepest descent method, which can be thought
of as the standard feedback control system with a proportional controller.

The acceleration is achieved by using a discrete version of a classical control
strategy for faster “closed-loop” response (i.e., acceleration of convergence to
the equilibrium): this strategy is known as derivative action in the control (see
[4] and references therein).

Along this line of thought, a natural approach to continuous time version
of the CG method was first presented in [4, p. 69] and is restated below for
convenience:

ṙ = −α(x,u)∇2φ(x)u (10)

u̇ = r− β(x,u)u (11)

where r := −∇φ(x), ∇2φ(x) ∈ R
n×n is the Hessian matrix and α, β : R

n×R
n →

R are scalar-valued functions of the state vector [xT uT ]T . In [4], the Hessian
matrix is denoted as A because it is applied to minimize the convex scalar
function φ(x) = 1

2x
TAx − bT x, where A = AT ∈ R

n×n is symmetric positive
definite, b ∈ R

n, and the vector u is denoted as p, but here it has been changed
to unify nomenclature. Since ṙ = −∇2φ(x)ẋ = −α(x,u)∇2φ(x)u, equations
(10) and (11) can be written in x-coordinates as:

ẋ = α(x,u)u
u̇ = −∇φ(x) − β(x,u)u

(12)

and these will be considered to be the defining equations of the CG net, so named
to recall its origins as a continuous version of the conjugate gradient algorithm.
It should be emphasized that, in the continuous time case (12), the letters CG
are just a convenient mnemonic to recall the origin of the equation and not
intended to draw attention to any conjugacy concepts. Two observations are
important here: (i) the first order vector CG ODE (12) is a generalization of
the second order HBF ODE (6), which is obtained by choosing α(x,u) = 1,
β(x,u) = γ > 0, ∀x; (ii) the first order vector CG ODE (12) cannot in general
be reduced to a second order ODE in x (see Remark 3.1).

In the backpropagation context, x is the weight vector, usually denoted
w, and the potential energy function φ is the error function usually denoted
E(w) (as in [30]). In fact, with these changes of notation, it is clear that the
HBF equation (6) is exactly the equation that has been proposed in [30] as the
continuous analog of BPM, using a similar physical model (point mass moving
in a viscous medium with friction under the influence of a conservative force
field and with Newtonian dynamics). Thus, the continuous version of BPM is
the HBF ODE and may be regarded either as a regularization of the steepest
descent ODE or the classical Newton ODE.

2.2 Analysis of the convergence of a second order algo-

rithm to the global minimum of a scalar objective

function

In this subsection, the goal is to show that the trajectories generated by a
second order algorithm similar to the HBF (6) always can converge to the global

6



minimum of a scalar objective function φ(x) : R → R, making an analogy with
the potential and the kinetic energies mentioned above.

A unitary mass ball rolling on a surface represented by the function φ(x),
and affected by a weight force produced by a unitary gravitational constant,
has a variation of kinetic energy 1

2∆‖ẋ‖2, a variation of potential energy which
can be expressed as ∆φ(x), and, when the movement is affected by a viscous
friction, there exists a non-conservative force whose work can be expressed as
−γ‖∆x‖, where γ is a friction parameter. Hence, by the conservation of energy:

1

2
∆‖ẋ‖2 + γ‖∆x‖ + ∆φ(x) = 0 (13)

Therefore:

⇒ 1

2
∂‖ẋ‖2 + γ‖∂x‖ + ∂φ(x) = 0

⇒ 1

2

∂ẋT ẋ

∂t
+ γ‖∂x

∂t
‖ +

∂φ(x)

∂t
= 0

⇒ ẍT ẋ + γ
ẋT ẋ

‖ẋ‖ + ∇Tφ(x)ẋ = 0

⇒ ẍ + γ
ẋ

‖ẋ‖ + ∇φ(x) = 0 (14)

Without lost of generality, we assume the scalar case where φ(x) : R → R,
such that φ(x) is continuous and with a continuous derivative. Of course, φ(x)
can be non-convex. We also assume that there exists x∗ ∈ R such that for
all x 6= x∗, φ(x) > φ(x∗), that is, the minimum is unique and finite. In the
following lemma, we prove that for all initial point x0 ∈ R, there exist γ > 0
and ẋ0 ∈ R such that trajectories generated by (14) converge to x∗.

Lemma 2.1 For all φ(x) : R → R | φ(x) ∈ C1, for all x0 ∈ R: there exist ẋ0

and γ > 0 such that trajectories generated by (14) converge to x∗.
The hypotheses are:
a) There exists x∗ ∈ R such that for all x 6= x∗: φ(x∗) < φ(x).
b) For all x0 ∈ R there exists x1 ∈ [x0, x

∗) such that for all x ∈ [x0, x
∗),

φ(x1) ≥ φ(x).1

c) There exists δ > 0 and x2 ∈ R such that x∗ ∈ (x1, x2) and for all x ∈
B(x∗, δ): φ(x2) > φ(x).

Figure 2 shows possible points x0, x1, x∗ and x2.
To prove this lemma, note that it is enough to prove that for all x0 ∈ R,

there exist γ > 0 and ẋ0 ∈ R such that ‖ẋ∗‖ ≥ 0 and there does not exist ẋ2 ∈ R

(so ‖ẋ2‖2 < 0).
Case 1) x1 = x0

In this case, it is enough to prove that for all ẋ1, there exist γ > 0 such that
‖ẋ∗‖2 ≥ 0 and ‖ẋ2‖2 < 0.

From (13):

1Note that x1 can be equal to x0.

7



Figure 2: Representation of the different points of the scalar objective function

‖ẋ2‖2 − ‖ẋ1‖2 + 2[φ(x2) − φ(x1)] = −2γ‖x2 − x1‖
⇒ ‖ẋ2‖2 = ‖ẋ1‖2 − 2[φ(x2) − φ(x1)] − 2γ‖x2 − x1‖ < 0

⇒ γ >
‖ẋ1‖2 − 2[φ(x2) − φ(x1)]

2‖x2 − x1‖
(15)

and

‖ẋ∗‖2 − ‖ẋ1‖2 + 2[φ(x∗) − φ(x1)] = −2γ‖x∗ − x1‖
⇒ ‖ẋ∗‖2 = ‖ẋ1‖2 + 2[φ(x1) − φ(x∗)] − 2γ‖x∗ − x1‖ ≥ 0

⇒ γ ≤ ‖ẋ1‖2 + 2[φ(x1) − φ(x∗)]

2‖x1 − x∗‖ (16)

From (15) and (16):

‖ẋ1‖2 − 2[φ(x2) − φ(x1)]

2‖x2 − x1‖
< γ ≤ ‖ẋ1‖2 + 2[φ(x1) − φ(x∗)]

2‖x1 − x∗‖ (17)

Note that, by the hypotheses b) and c), the last term in (17) is always greater
than the first one, hence, always there exists γ > 0 that satisfies (17). Note also
that the first term can be negative, and in this case any non-negative value of
the parameter γ satisfies the first inequality.

Case 2) x1 ∈ (x0, x
∗)

In this case (in addition with the case 1), it is enough to prove that for all
x0 and γ > 0, there exists ẋ0 such that ẋ1 > ǫ for some positive constant ǫ
arbitrarily small.

From (13):

‖ẋ1‖2 − ‖ẋ0‖2 + 2[φ(x1) − φ(x0)] + 2γ‖x1 − x0‖ = 0

⇒ ‖ẋ1‖2 = ‖ẋ0‖2 − 2[φ(x1) − φ(x0)] − 2γ‖x1 − x0‖ > ǫ2

⇒ ‖ẋ0‖ > [ǫ2 + 2[φ(x1) − φ(x0)] + 2γ‖x1 − x0‖]
1
2 (18)

8



From (17) and (18), for all x0, there exist γ > 0 and ẋ0 such that ‖ẋ1‖ > ǫ
for some ǫ arbitrarily small, ‖ẋ∗‖2 ≥ 0 and there does not exist ‖ẋ2‖ ∈ R.
Therefore, trajectories generated by (14) converge to x∗.

In the sequel, new algorithms as well as the HBF, DIN and CG algorithms
will be derived in a unified manner using the CLF method and compared.

3 Continuous time second order algorithms

In order to carry out the design of second order algorithms, we first describe
the corresponding control system illustrated in Figure 1. The reference variable
is the lower bound for minimum value of the objective function, denoted φmin.
This lower bound is compared with the current value of the function, generating
a residual or error function r(t). The residue is the input to a controller which
generates the input, u(t) to the plant, which, in turn, has output equal to
its state x(t). With an appropriate choice of controller and plant, the state
variable describes a trajectory from an initial point to the global minimum of
the objective function, i.e. the residue is minimized.

The update laws of the control variable u and the state variable x are de-
signed using control Liapunov functions.

Choosing (4) as the Liapunov function candidate, equation (5) is its corres-
ponding time derivative. In the sequence, several choices of plant (x-dynamic)
and controller (u-dynamic) arise in different second order algorithms.

1) First choice
Plant ẋ = u.

Substituting in (5) yields: V̇ = uT (u̇ + ∇φ(x)).
Controller u̇ = −κ sgn(u) −∇φ(x)

where κ > 0.
In the sequel, an analysis of the stability of the continuous-time system

formed by these choices of plant and controller and the convergence of their
trajectories will be realized.

Substituting the equations of the plant and controller in (5):

V̇ = −κ‖u‖1 ≤ 0 (19)

Note that V̇ is continuous but it is not continuously differentiable; it fails to
be differentiable at ui = 0 for all i ∈ {1, · · · , n}. However, u = 0, ∇φ(x) = 0 is
an equilibrium point of (19).

By the controller equation, which has the function sgn, this is a nonsmooth
system. Thus, commonly used tools to ensure stability of nonlinear dynamical
systems, e.g. Barbalat’s lemma, cannot be applied here.

The overall system can be written as the following Filippov set valued map:

ẇ =

[

ẋ

u̇

]

=

[

u

−∇φ(x) − κ sgn(u)

]

∈ F(w(t)) (20)

where w(t) := [x(t)T u(t)T ]T ∈ R
2n and F(w) : R

2n → B(R2n) is a set valued
map which can be defined as

9



F(w) =















































{[

u

−∇φ(x) − κ sgn(u)

]}

if ui 6= 0 ∀i ∈ {1, · · · , n}
















u

−∇1φ(x) − κ sgn(u1)
·

−∇iφ(x) − κ co{−1 , 1}
·

−∇nφ(x) − κ sgn(un)

















if ∃i ∈ {1, · · · , n} |ui = 0
(21)

If there exists i ∈ {1, · · · , n} such that ui = 0, then, the n+ith component of
the set valued map is Fn+i(w) = −∇iφ(x)−κ co{−1 , 1}, where co denotes the
convex hull between the scalar values, which in this case is co{−1 , 1} = [−1 , 1],

and ∇iφ(x) denotes the ith component of the vector ∇φ(x).
Defining w∗ := [xT

∗ 0T ]T , being x∗ any zero gradient point, i.e. any point
such that ∇φ(x∗) = 0, we observe that 0 ∈ F(w∗), hence w∗ is an equilibrium
point of (20).

Note that:
i) F : R

2n → B(R2n) is a piecewise continuous time-invariant set valued map,
it is locally bounded and take nonempty, compact and convex values. For all
w ∈ R

2n, the set valued map F(w(t)) is upper semi-continuous and measurable.

The Lie derivative of V (w), defined as in (4), along the trajectories defined
by ẇ is defined as (see [31, p. 63]):

V̇ ∈ L̄FV (w) =

{

∂V

∂w

T

v |v ∈ F(w)

}

=
∂V

∂x

T

ẋ +
∂V

∂u

T

u̇ = −κuT sgn(u)

which implies

L̄FV = −κ
[

∑

∀i|ui 6=0 |ui| +
∑

∀j|uj=0 ujco{−1, 1}
]

= −κ∑

∀i|ui 6=0 |ui| < 0 ∀u 6= 0

Hence, V (x(t),u(t)) is nonincreasing and u(t) and φ(x(t)) are limited.
The following conditions are satisfied:
ii) V (x,u) is locally Lipschitz and regular on R

2n.
iii) V (x,u) = 0 for all x = x∗, u = 0 and V (x,u) > 0 for all x 6= x∗ or

u 6= 0.
iv) max L̄FV (w(t)) ≤ 0 for all w 6= w∗. L̄FV (w∗) = 0.
Then, by i), ii), iii), and iv), w∗ is a strongly stable equilibrium of (20) (see

[31, theorem 1]).
Note that {w∗} is an invariant set for the system (20). For condition iv), all

the trajectories w(t) : [0 , ∞) → R
2n converge to the largest weakly invariant

set contained in

{w ∈ R
2n | 0 ∈ L̄FV (w)}

and this set consists in all the points w∗ (see [31, theorem 2]).

10



Hence, V̇ tends to zero, and therefore u̇ and u tend to zero too. By the
controller equation, ∇φ(x) tends to zero too.

This ensures that the trajectory tends to a point where the gradient ∇φ(x)
becomes zero, which is merely a necessary condition for a global minimum, but
far from being sufficient. In fact, as in the case of the HBF mechanical analogy
mentioned above, a suitable choice of the parameter κ of the nonlinear damping
term may make it possible for trajectories to traverse basins of attraction of local
minima and converge to the global minimum, although this is not guaranteed.

Observe that the controller above is of the variable structure type since it
contains a signum function sgn, and the typical behavior of the trajectories in
these systems is the sliding mode. Thus, the control variable u(t) describes a
sliding mode trajectory, not the output variable x(t).

Given the choices of the plant and the controller, the resulting second order
ODE neural network model is:

ẍ + κsgn(ẋ) + ∇φ(x) = 0 (22)

and will be denoted MI1 (minimization algorithm 1).

2) Second choice
Plant ẋ = u.

Substituting in (5): V̇ = uT (u̇ + ∇φ(x)).
Controller u̇ = −κ(∇2φ(x))2u −∇φ(x)

where κ > 0 and ∇2φ(x) is the Hessian matrix of the function. Substituting in
(5):

V̇ = −κuT (∇2φ(x))2u ≤ 0 (23)

which implies that u and φ(x) are limited. Since V̇ is uniformly continuous, by
Barbalat’s lemma (see [14, p. 123]) V̇ tends to zero when t → ∞. Note that
this may implies u = 0, or a point where ∇2φ(x) = 0, or u ∈ N (∇2φ(x)), the
null-space of the Hessian matrix. Thus convergence is only local.

Similarly to the case MI1, this algorithm generates trajectories that can
stop at any zero gradient point, not necessarily at the global minimum, and the
possibility to pass through undesired local minima depends on the choice of the
parameter κ.

By the equations of the plant and the controller, the resulting second order
ODE neural network model is:

ẍ + κ(∇2φ(x))2ẋ + ∇φ(x) = 0 (24)

and will be denoted MI2.

3) Third choice
Plant ẋ = ∇−2φ(x)u.

where ∇−2φ(x) denotes the inverse of the Hessian matrix. Substituting in (5):
V̇ = uT (u̇ + ∇−2φ(x)∇φ(x)).

Controller u̇ = −κu−∇−2φ(x)∇φ(x)
where κ > 0. Substituting in (5):

V̇ = −κuTu (25)

11



Since V̇ is uniformly continuous, by Barbalat’s lemma, V̇ tends to zero when
t tends to infinity, and hence u and u̇ both tend to zero too, implying, from
the controller equation, that ∇−2φ(x)∇φ(x) tends to zero too. Note that this
implies that the trajectories can stop not only at a zero gradient point, but also
at a point such that ∇φ(x) ∈ N (∇−2φ(x)), the null-space of the inverse of the
Hessian matrix, and thus convergence is only local. Moreover, since the inverse
of the Hessian matrix occurs in the definition of both plant and controller, this
algorithm is not defined at the points where the Hessian is singular, that is,
where det(∇2φ(x)) = 0.

From the choices of the plant and the controller, the resulting second order
ODE neural network model is:

∇̈φ(x) + κ∇̇φ(x) + ∇−2φ(x)∇φ(x) = 0 (26)

This algorithm will be denoted MI3.

4) Fourth choice
Plant ẋ = ∇2φ(x)u.

Substituting in (5): V̇ = uT (u̇ + ∇2φ(x)∇φ(x)).
Controller u̇ = −κu−∇2φ(x)∇φ(x)

where κ > 0. Substituting in (5):

V̇ = −κuTu (27)

An analysis similar to those made above, allows us to conclude that the
trajectories can stop not only at zero gradient points, but also at points x

such that ∇φ(x) ∈ N (∇2φ(x)), the null-space of the Hessian matrix. Thus
convergence is only local.

The resulting second order ODE neural network model is:

ẍ + (κI − ∇̇2φ(x)∇−2φ(x))ẋ + (∇2φ(x))2∇φ(x) = 0 (28)

This algorithm will be denoted as MI4.

5) Fifth choice
It is possible to design other algorithms by changing the candidate Liapunov

function. For example, choosing

V (x,u) = (a+ b)(φ(x) − φmin) +
‖∇φ(x) + u‖2

2
≥ 0 (29)

where a and b are scalar parameters such that a+ b > 0.
Note that this candidate Liapunov function is equal to zero only at a point

x = x∗ such that φ(x∗) = φmin, point where ∇φ(x∗) = 0, and for u = 0.
The time derivative of (29) is

V̇ = (a+ b)∇Tφ(x)ẋ + (∇φ(x) + u)T (∇2φ(x)ẋ + u̇) (30)

The plant and the controller are chosen as follows:
Plant ẋ = ∇−2φ(x)u

where ∇−2φ(x) denotes the inverse of the Hessian matrix. Substituting in (30):
V̇ = (a+ b)∇Tφ(x)∇−2φ(x)u + (∇φ(x) + u)T (u + u̇)

12



Controller u̇ = −γ∇φ(x) − (1 − γ)u−∇−2φ(x)(au + b∇φ(x))
where γ ∈ R. Substituting in (30):

V̇ = (a+ b)∇Tφ(x)∇−2φ(x)u+
(∇φ(x) + u)T (u − γ∇φ(x) − (1 − γ)u−∇−2φ(x)(au + b∇φ(x)))

= (a+ b)∇Tφ(x)∇−2φ(x)u + ∇Tφ(x)u − γ∇Tφ(x)∇φ(x)
+uTu − γuT∇φ(x) − (1 − γ)∇Tφ(x)u − (1 − γ)uT u

−a∇Tφ(x)∇−2φ(x)u − b∇Tφ(x)∇−2φ(x)∇φ(x)
−auT∇−2φ(x)u − buT∇−2φ(x)∇φ(x)

= −∇Tφ(x)(γI + b∇−2φ(x))∇φ(x) − uT (−γI + a∇−2φ(x))u

where the fact that the Hessian matrix of a scalar function is symmetric has
been used.

Note that if a, b and γ were chosen in such a way that γI + b∇−2φ(x) ≻ 0
and −γI + a∇−2φ(x) ≻ 0 in a region, then V̇ ≤ 0 and since this is uniformly
continuous, by Barbalat’s lemma it tends to zero inside this region, thus con-
vergence is only local. If V̇ tends to zero, then u, u̇ and ∇φ(x) tend to zero
too, but the trajectories can stop at any zero gradient point.

This algorithm can also be represented as a second order ODE:

∇̈φ(x) + (I − γI + a∇−2φ(x))∇̇φ(x) + (γI + b∇−2φ(x))∇φ(x) = 0 (31)

This algorithm will be denoted as MI5.

6) DIN
DIN algorithm (8), can also be viewed as a dynamical closed loop control

system, with the following choices for the plant and the controller:

Plant ẋ = u.
Controller u̇ = −∇φ(x) − au− b∇2φ(x)u.
To make an analysis of the trajectories generated by this algorithm, we

choose a candidate Liapunov function similar to the energy function used in
[13]:

V (x,u) = (ab+ 1)(φ(x) − φmin) +
‖u + b∇φ(x)‖2

2
≥ 0 (32)

Note that (32) is equal to zero only at x = x∗ and u = 0. The time
derivative of (32), applying the plant and the controller equations, that is, along
the trajectories generated by the closed loop system, is:

V̇ = (ab+ 1)∇Tφ(x)u + (u + b∇φ(x))T

(−∇φ(x) − au− b∇2φ(x)u + b∇2φ(x)u)
= ab∇Tφ(x)u + ∇Tφ(x)u − uT∇φ(x) − a‖u‖2

−b‖∇φ(x)‖2 − ab∇Tφ(x)u
= −a‖u‖2 − b‖∇φ(x)‖2

By Barbalat’s lemma, since V̇ is uniformly continuous, V̇ tends to zero and
therefore u and ∇φ(x) also tend to zero, but trajectories can stop at any zero
gradient point, depending on the choice of the parameters a and b to be able to
bypass local minima.

Making the change of variables proposed in the plant and the controller
choices, that is, ẋ = u and ẍ = u̇ = −∇φ(x)− aẋ− b∇2φ(x)ẋ, we easily arrive

13



to (8).

7) HBF
The algorithm HBF (6), can also be represented as a dynamical closed loop

control system. Choosing (4) as candidate Liapunov function, and with the
following choices for plant and controller:

Plant ẋ = u

and substituting in (5): V̇ = uT (∇φ(x) + u̇).
Controller u̇ = −γu−∇φ(x)

where γ > 0. Substituting in (5):

V̇ = −γuTu ≤ 0

Making the same analysis as above, by Barbalat’s lemma u and u̇ tend to
zero, and from the controller equation, we conclude that the trajectories can
stop at any point x such that ∇φ(x) = 0. Trajectories could pass through local
minima and converge to the global minimum by suitable choice of the parameter
γ.

Making the change of variables realized in the plant definition ẋ = u, and
applying the controller equation u̇ = ẍ = −∇φ(x)− γẋ, we easily arrive at (6).

Here, we extend the definition of the HBF algorithm (6) to the following
second order ODE:

ẍ + γ(x, ẋ)ẋ + µ(x, ẋ)∇φ(x) = 0 (33)

where γ(x, ẋ) and µ(x, ẋ) : R
n×R

n → R are scalar-valued functions of the state
variables x and ẋ. Algorithm (33) will be denoted as generalized heavy ball with
friction (gHBF). Note that the choice µ = 1 leads to the HBF ODE (6).

The system (33) can also be interpreted as a closed loop control system, by
the following choices of plant and controller.

Plant ẋ = u.
Controller u̇ = −γ(x,u)u − µ(x,u)∇φ(x).

Choosing (4) as candidate Liapunov function, and substituting the equations
of the plant and the controller in (5), yields:

V̇ = (1 − µ(x,u))∇Tφ(x)u − γ(x,u)uT u (34)

The choices of different expressions for µ(x,u) and γ(x,u) that make V̇ ne-
gative in (34) lead to different algorithms. In the sequel, some choices of these
functions will be presented.

7a) First choice
γ > 0 as a constant value.

µ(x,u) =











1 − γ u
T
u

∇T φ(x)u
+ a if ∇Tφ(x)u > ǫ

1 − γ u
T
u

∇T φ(x)u − b if ∇Tφ(x)u < −ǫ
1 if |∇Tφ(x)u| ≤ ǫ

(35)

14



−5 0 5

−4

−2

0

2

4

6

µ(x,u)

1+c

−ε

1

1+a

1−b

1−d

1−b+γ uT u /  ε

1+a−γ uT u /  ε

ε
∇ Tφ(x)u

Figure 3: Possible values of the parameter µ(x,u) versus ∇Tφ(x)u

where the parameters a > 0, b > 0, and the parameter ǫ is a positive scalar
value small enough. The parameters a and b can be variables. For example, the
choices

a = γ u
T
u

∇T φ(x)u + c, c > 0 leads to the parameter µ = 1 + c if ∇Tφ(x)u > ǫ

b = −γ u
T
u

∇T φ(x)u + d, d > 0 leads to the parameter µ = 1 − d if ∇Tφ(x)u < −ǫ

Note that for |∇Tφ(x)u| ≤ ǫ, the algorithm (33) becomes equal to (6).
Figure 3 shows possible values of the parameter µ(x,u) versus ∇Tφ(x)u.
With the parameter µ(x,u) chosen as in (35), the system (33) becomes

nonsmooth, and it can be represented by the following Filippov set valued map:

ẇ =

[

ẋ

u̇

]

=

[

u

−γu− µ(x,u)∇φ(x)

]

∈ F(w(t)) (36)

where w(t) := [x(t)T u(t)T ]T and F(w) is:

F(w) =







































[uT − γuT −
(

1 − γ u
T
u

∇T φ(x)u
+ a

)

∇Tφ(x)]T if ∇Tφ(x)u > ǫ

[uT − γuT −
(

1 − γ u
T
u

∇T φ(x)u − b
)

∇Tφ(x)]T if ∇Tφ(x)u < −ǫ
[uT − γuT −∇Tφ(x)]T if |∇Tφ(x)u| < ǫ

[uT − γuT − co
{

1 , 1 − γ u
T
u

ǫ
+ a

}

∇Tφ(x)]T if ∇Tφ(x)u = ǫ

[uT − γuT − co
{

1 , 1 + γ u
T
u

ǫ
− b

}

∇Tφ(x)]T if ∇Tφ(x)u = −ǫ

Defining w∗ := [xT
∗ 0T ]T , being x∗ any zero gradient point, 0 ∈ F(w∗) and

hence w∗ is an equilibrium point of (36).
Note that:

15



i) F : R
2n → B(R2n) is a piecewise continuous set valued map, it is locally

bounded and take nonempty, compact and convex values. For all w ∈ R
2n, the

set valued map F(w(t)) is upper semi-continuous and measurable.
The Lie derivative of the candidate Liapunov function (4), V (w) along the

trajectories defined by ẇ in (36) is defined as (see [31, p. 63]):

V̇ = (1 − µ(x,u))∇Tφ(x)u − γuTu ∈ L̄FV (w) =
{

∂V
∂w

T
v |v ∈ F(w)

}

=























−a∇Tφ(x)u < 0 if ∇Tφ(x)u > ǫ
b∇Tφ(x)u < 0 if ∇Tφ(x)u < −ǫ
−γuTu ≤ 0 if |∇Tφ(x)u| < ǫ
co{−γuTu , −aǫ} < 0 if ∇Tφ(x)u = ǫ
co{−γuTu , −bǫ} < 0 if ∇Tφ(x)u = −ǫ

Hence V̇ (w) < 0 for all u 6= 0. Hence u and φ(x) are limited.
The following conditions are satisfied:
ii) V (x,u) is locally Lipschitz and regular on R

2n.
iii) V (x,u) = 0 for all x = x∗, u = 0 and V (x,u) > 0 for all x 6= x∗ or

u 6= 0.
iv) max L̄FV (w(t)) ≤ 0 for all w 6= w∗, L̄FV (w∗) = 0.
Then, by i), ii), iii), and iv), w∗ is a strongly stable equilibrium of (36) (see

[31, theorem 1]) and the trajectories generated by (36) converge to the largest
invariant set {w∗} = {[xT 0T ]T | ∇φ(x) = 0} (see [31, theorem 2]).

Hence, V̇ tends to zero, and therefore u̇ and u tend to zero too. By the
controller equation, ∇φ(x) tends to zero too. Here again, depends on the choice
of the parameters γ, a and b that trajectories achieve pass through local minima
to converge to the global minimum of the function.

This algorithm will be denoted as HBF1.

7b) Second choice
γ > 0 as a constant value.
µ(x,u) = 1 + κ sgn(∇Tφ(x)u)

where κ > 0. Here again, this is a nonsmooth system, which can be represented
by the following set valued map:

ẇ =

[

ẋ

u̇

]

=

[

u

−γu− (1 + κ sgn(∇Tφ(x)u))∇φ(x)

]

∈ F(w(t)) (37)

where w(t) := [x(t)T u(t)T ]T and the set valued map F(w) can be represented
as:

F(w) =







[uT − γuT − (1 + κ)∇Tφ(x)]T if ∇Tφ(x)u > 0
[uT − γuT − (1 − κ)∇Tφ(x)]T if ∇Tφ(x)u < 0
[uT − γuT − (1 + co{−κ ; +κ})∇Tφ(x)]T if ∇Tφ(x)u = 0

(38)
where co{−κ , +κ} = [−κ , +κ].

The point w∗ := [xT
∗ 0T ]T , being x∗ any zero gradient point, is an equili-

brium point of (37).

16



The Lie derivative of the candidate Liapunov function (4) along the trajec-
tories determined by ẇ(t) is:

V̇ ∈ L̄FV (w) = {∇TV (w)v̇ |v ∈ F(w)} =

=

{

−κ|∇Tφ(x)u| − γuTu < 0 if ∇Tφ(x)u 6= 0
−γuTu − [−κ , +κ]∇Tφ(x)u = −γuTu ≤ 0 if ∇Tφ(x)u = 0

An analysis completely similar to that made in the former subsection allows
to conclude that the trajectories determined by (37) converge to a point w∗.

This algorithm will be denoted as HBF2.

7c) Third choice
γ > 0 as a constant value.

µ(x,u) =

{

1 + κ 1
∇T φ(x)u if |∇Tφ(x)u| > ǫ

1 if |∇Tφ(x)u| ≤ ǫ
(39)

where κ > 0 and ǫ > 0 is a constant value small enough. Note that, for
|∇Tφ(x)u| ≤ ǫ, this algorithms becomes equal to (6). Here again, this is a
nonsmooth system which can be represented by the following set valued map:

ẇ =

[

ẋ

u̇

]

=

[

u

−γu− µ(x,u)∇φ(x)

]

∈ F(w(t)) (40)

where w(t) := [x(t)T u(t)T ]T and the set valued map F(w) can be represented
as:

F(w) =































[uT − γuT −
(

1 + κ 1
∇T φ(x)u

)

∇Tφ(x)]T if ∇Tφ(x)u > ǫ

[uT − γuT −
(

1 + κ 1
∇T φ(x)u

)

∇Tφ(x)]T if ∇Tφ(x)u < −ǫ
[uT − γuT −∇Tφ(x)]T if |∇Tφ(x)u| < ǫ
[uT − γuT − co

{

1 , 1 + κ
ǫ

}

∇Tφ(x)]T if ∇Tφ(x)u = ǫ
[uT − γuT − co

{

1 , 1 − κ
ǫ

}

∇Tφ(x)]T if ∇Tφ(x)u = −ǫ

Note that w∗ := [xT
∗ 0T ]T , being x∗ any zero gradient point, is an equili-

brium point of (40).
The Lie derivative of the candidate Liapunov function (4) along the trajec-

tories determined by ẇ(t) is:

V̇ ∈ L̄FV = {∇TV (w)v | v ∈ F(w)} =

=















−κ− γuTu < 0 if |∇Tφ(x)u| > ǫ
−γuTu ≤ 0 if |∇Tφ(x)u| < ǫ
−γuTu + [−κ , 0] < 0 if ∇Tφ(x)u = ǫ
−γuTu − [0 , κ] < 0 if ∇Tφ(x)u = −ǫ

An analysis completely similar to that made in the former subsection allows
to conclude that the trajectories determined by (40) converge to a point w∗.

This algorithm will be denoted as HBF3.

7d) Fourth choice
γ > 0 as a constant value.

17



µ(x,u) = 1 + κ∇Tφ(x)u
where κ > 0. Note that this is a smooth system, which can be represented by
the following first order ODE:

ẇ(t) =

[

ẋ

u̇

]

=

[

u

−γu− (1 + κ∇Tφ(x)u)∇φ(x)

]

(41)

where w(t) := [x(t)T u(t)T ]T and w∗ := [xT
∗ 0T ]T , being x∗ any zero gradient

point, is an equilibrium point of (41).
The derivative of the candidate Liapunov function (4) along the trajectories

determined by (41) is:

V̇ (w) = ∇TV (w)ẇ = −κ(∇Tφ(x)u)2 − γuTu ≤ 0

By the Barbalat’s lemma, since V̇ is uniformly continuous, V̇ tends to zero
when t tends to infinity, so u → 0. By the controller equation ∇φ(x) also tends
to zero, and the system can stop at any zero gradient point.

This algorithm will be denoted as HBF4.

7e) Fifth choice

γ(x,u) =

{

b
u

T
u

if uTu > ǫ
1 if uTu ≤ ǫ

µ(x,u) =

{

1 + a
∇T φ(x)u if |∇Tφ(x)u| > ǫ

1 if |∇Tφ(x)u| ≤ ǫ

(42)

where a > 0, b > 0 and the parameter ǫ is a positive constant value small
enough. This is also a nonsmooth system which can be represented by the
following piecewise continuous set valued map:

ẇ(t) =

[

ẋ

u̇

]

=

[

u

−γ(x,u)u− µ(x,u)∇φ(x)

]

∈ F(w(t)) =


























































































[uT − b
u

T
u
uT −

(

1 + a
∇T φu

)

∇Tφ(x)]T if uT u > ǫ and |∇Tφ(x)u| > ǫ

[uT − uT −
(

1 + a
∇T φu

)

∇Tφ(x)]T if uT u < ǫ and |∇Tφ(x)u| > ǫ

[uT − b
u

T
u
uT −∇Tφ(x)]T if uT u > ǫ and |∇Tφ(x)u| < ǫ

[uT − uT −∇Tφ(x)]T if uT u < ǫ and |∇Tφ(x)u| < ǫ

[uT −
[

1 , b
ǫ

]

uT −
(

1 + a
∇T φu

)

∇Tφ(x)]T if uT u = ǫ and |∇Tφ(x)u| > ǫ

[uT −
[

1 , b
ǫ

]

uT −∇Tφ(x)]T if uT u = ǫ and |∇Tφ(x)u| < ǫ
[uT − b

u
T
u
uT −

[

1 , 1 + a
ǫ

]

∇Tφ(x)]T if uT u > ǫ and ∇Tφ(x)u = ǫ
[uT − b

u
T
u
uT −

[

1 , 1 − a
ǫ

]

∇Tφ(x)]T if uT u > ǫ and ∇Tφ(x)u = −ǫ
[uT − uT −

[

1 , 1 + a
ǫ

]

∇Tφ(x)]T if uT u < ǫ and ∇Tφ(x)u = ǫ
[uT − uT −

[

1 , 1 − a
ǫ

]

∇Tφ(x)]T if uT u < ǫ and ∇Tφ(x)u = −ǫ
[uT −

[

1 , b
ǫ

]

uT −
[

1 , 1 + a
ǫ

]

∇Tφ(x)]T if uT u = ǫ and ∇Tφ(x)u = ǫ
[uT −

[

1 , b
ǫ

]

uT −
[

1 , 1 − a
ǫ

]

∇Tφ(x)]T if uT u = ǫ and ∇Tφ(x)u = −ǫ
(43)

Note that w∗ := [xT
∗ 0T ]T , being x∗ any zero gradient point, is an equili-

brium point of (43).
The Lie derivative of the candidate Liapunov function (4) along the trajec-

tories determined by ẇ(t) is:

18



V̇ ∈ L̄FV = {∇TV (w)v | v ∈ F(w)} =

=















































































−b− a < 0 if uTu > ǫ and |∇Tφ(x)u| > ǫ
−uTu − a < 0 if uTu < ǫ and |∇Tφ(x)u| > ǫ
−b < 0 if uTu > ǫ and |∇Tφ(x)u| < ǫ
−uTu ≤ 0 if uTu < ǫ and |∇Tφ(x)u| < ǫ
−[ǫ , b] − a < 0 if uTu = ǫ and |∇Tφ(x)u| > ǫ
−[ǫ , b] < 0 if uTu = ǫ and |∇Tφ(x)u| < ǫ
−b− [0 , a] < 0 if uTu > ǫ and ∇Tφ(x)u = ǫ
−b− [0 , a] < 0 if uTu > ǫ and ∇Tφ(x)u = −ǫ
−uTu − [0 , a] < 0 if uTu < ǫ and ∇Tφ(x)u = ǫ
−uTu − [0 , a] < 0 if uTu < ǫ and ∇Tφ(x)u = −ǫ
−[ǫ , b] − [0 , a] < 0 if uTu = ǫ and ∇Tφ(x)u = ǫ
−[ǫ , b] − [0 , a] < 0 if uTu = ǫ and ∇Tφ(x)u = −ǫ

An analysis completely similar to that made in the former subsection allows
to conclude that the trajectories determined by (43) converge to the point w∗.

This algorithm will be denoted as HBF5.

7f) Sixth choice

µ =

{

µ1 > 1 if ∇Tφ(x)u > 0
µ2 | 0 < µ2 < 1 if ∇Tφ(x)u ≤ 0

γ(x,u) =

{

(1 − µ)∇
T φ(x)u
u

T
u

+ a if uTu > ǫ
a if uTu ≤ ǫ

(44)

where a > 0 and ǫ > 0 is a constant value small enough.
The system (33) becomes nonsmooth with these parameters, and it can be

represented by the following set valued map:

ẇ(t) =

[

ẋ

u̇

]

=

[

u

−µ∇φ(x) − γ(x,u)u

]

∈ F(w) =






































































[uT − µ1∇Tφ(x) −
[

(1 − µ1)
∇T φ(x)u

u
T
u

+ a
]

uT ]T if uT u > ǫ and ∇Tφ(x)u > 0

[uT − µ1∇Tφ(x) − auT ]T if uT u < ǫ and ∇Tφ(x)u > 0

[uT − µ2∇Tφ(x) −
[

(1 − µ2)
∇T φ(x)u

u
T
u

+ a
]

uT ]T if uT u > ǫ and ∇Tφ(x)u < 0

[uT − µ2∇Tφ(x) − auT if uT u < ǫ and ∇Tφ(x)u < 0

[uT − µ1∇Tφ(x) −
[

a , (1 − µ1)
∇T φ(x)u

ǫ
+ a

]

uT ]T if uT u = ǫ and ∇Tφ(x)u > 0

[uT − µ2∇Tφ(x) −
[

a , (1 − µ2)
∇T φ(x)u

ǫ
+ a

]

uT ]T if uT u = ǫ and ∇Tφ(x)u < 0

[uT − [µ1 , µ2]∇Tφ(x) − auT ]T if uT u > ǫ and ∇Tφ(x)u = 0
[uT − [µ1 , µ2]∇Tφ(x) − auT ]T if uT u < ǫ and ∇Tφ(x)u = 0
[uT − [µ1 , µ2]∇Tφ(x) − auT ]T if uT u = ǫ and ∇Tφ(x)u = 0

(45)
where w(t) = [x(t)T u(t)T ]T . Defining w∗ = [xT

∗ 0T ]T , being x∗ any zero
gradient point, we note that 0 ∈ F(w∗), hence w∗ is an equilibrium point of
(45).

The Lie derivative of the candidate Liapunov function (4) along the trajec-
tories defined by (45) is:

19



V̇ (w) ∈ L̄FV (w) = {∇TV (w)v | v ∈ F(w)} =

=























































−auTu < 0 if uTu > ǫ and ∇Tφ(x)u > 0
(1 − µ1)∇Tφ(x)u − auT u < 0 if uTu < ǫ and ∇Tφ(x)u > 0
−auTu < 0 if uTu > ǫ and ∇Tφ(x)u < 0
(1 − µ2)∇Tφ(x)u − auT u < 0 if uTu < ǫ and ∇Tφ(x)u < 0
−aǫ+ [0 , 1](1 − µ1)∇Tφ(x)u < 0 if uTu = ǫ and ∇Tφ(x)u > 0
−aǫ+ [0 , 1](1 − µ2)∇Tφ(x)u < 0 if uTu = ǫ and ∇Tφ(x)u < 0
−auTu < 0 if uTu > ǫ and ∇Tφ(x)u = 0
−auTu ≤ 0 if uTu < ǫ and ∇Tφ(x)u = 0
−aǫ < 0 if uTu = ǫ and ∇Tφ(x)u = 0

Hence L̄F (w) < 0 for all w such that u 6= 0, and L̄F (w) = 0 for all w such
that u = 0. Making an analysis completely similar to that made in the former
sections, w(t) tends to the invariant set {w∗}, that is, to a zero gradient point.

This algorithm will be denoted HBF6.

Surely, there exist other choices of the parameters µ(x,u) and γ(x,u) that
make L̄FV (w) negative for all u 6= 0. The ones presented here are only the
simplest examples.

8) CG
The conjugate gradient algorithm (12), as mentioned above, can also be

viewed as a closed loop control system. Equation (12) is rewritten here for
convenience.

ẋ = α(x,u)u
u̇ = −∇φ(x) − β(x,u)u

(46)

Choosing (4) as candidate Liapunov function, and using (46) as the choices
of plant and controller, respectively, the candidate Liapunov function derivative
yields:

V̇ = (α(x,u) − 1)uT∇φ(x) − β(x,u)uT u

Observe that the choice α = 1 results V̇ < 0 for all β > 0 and u 6= 0, but
in this case (46) becomes equivalent to the HBF ODE (6) with the parameter
β = γ.

Here again, different choices of the parameters α(x,u) and β(x,u) lead to
different algorithms.

Remark 3.1 Observe that, if α(x,u) is assumed differentiable in x,u, then
(46) can be rewritten (in terms of ẍ, ẋ,x) as follows:

ẍ + β(x,u)ẋ + α(x,u)∇φ(x) −
[

∂α

∂x
ẋ +

∂α

∂u
u̇

]

u = 0

If it is assumed that α depends only on x (and not on u), then (46) can be
reduced to second order form, yielding (assuming α(x) 6= 0, for all x):

ẍ +

[

β(x) − ∇α(x)T ẋ

α(x)

]

ẋ + α(x)∇φ(x) = 0 (47)

20



so that the state-dependent term α(x) is seen to give rise to a nonlinear damping
term (the term within square brackets in (47)). Of course, a switching law of
the parameter α for the CG ODE is discontinuous, so reduction to the second
order form above is not possible, but it does serve as an indication that the CG
dynamics are quite different and more complex than the HBF dynamics.

In the sequel, some choices of the parameters α(x,u) and β(x,u) will be
presented.

8a) First choice
β > 0 as a constant value.

α(x,u) =











1 + β u
T
u

∇T φ(x)u − a if ∇Tφ(x)u > ǫ

1 + β u
T
u

∇T φ(x)u + b if ∇Tφ(x)u < −ǫ
1 if |∇Tφ(x)u| ≤ ǫ

(48)

where a > 0, b > 0 and ǫ > 0 is a constant value small enough.
Also here, as in the case 7a), the parameters a and b can be variables. For

example, the choices

a = β u
T
u

∇T φ(x)u + c, c > 0 leads to α = 1 − c if ∇Tφ(x)u > ǫ

b = −β u
T
u

∇T φ(x)u + d, d > 0 leads to α = 1 + d if ∇Tφ(x)u < −ǫ
With these choices of the parameters β and α(x,u), the algorithm (46)

becomes nonsmooth, and can be represented by the following set valued map:

ẇ(t) =

[

ẋ

u̇

]

=

[

α(x,u)u
−∇φ(x) − βu

]

∈ F(w) =

=











































[(

1 + β u
T
u

∇T φ(x)u − a
)

uT −∇Tφ(x) − βuT
]T

if ∇Tφ(x)u > ǫ
[(

1 + β u
T
u

∇T φ(x)u + b
)

uT −∇Tφ(x) − βuT
]T

if ∇Tφ(x)u < −ǫ
[uT −∇Tφ(x) − βuT ]T if |∇Tφ(x)u| < ǫ
[

[1 , 1 + β u
T
u

ǫ
− a]uT −∇Tφ(x) − βuT

]T

if ∇Tφ(x)u = ǫ
[

[1 , 1 − β u
T
u

ǫ
+ b]uT −∇Tφ(x) − βuT

]T

if ∇Tφ(x)u = −ǫ
(49)

where w(t) = [x(t)T u(t)T ]T . Defining w∗ = [xT
∗ 0T ]T , being x∗ any zero

gradient point, 0 ∈ F(w∗), hence w∗ is an equilibrium point of (49).
Choosing (4) as candidate Liapunov function, the Lie derivative of V (w)

along the trajectories defined by (49) is:

V̇ (w) ∈ L̄FV (w) =
{

∇TV (w)v | v ∈ F(w)
}

=

=























−a∇Tφ(x)u < 0 if ∇Tφ(x)u > ǫ
b∇Tφ(x)u < 0 if ∇φ(x)T u < −ǫ
−βuTu ≤ 0 if |∇Tφ(x)u| < ǫ
[−aǫ , −βuTu] < 0 if ∇Tφ(x)u = ǫ
[−bǫ , −βuT u] < 0 if ∇Tφ(x)u = −ǫ

Here again, an analysis similar to that made in the former subsections, allow
us to conclude that u and u̇ tend to zero, and, by the controller equation, ∇φ(x)
also tends to zero. Therefore, the trajectories generated by this algorithm can

21



stop at any zero gradient point, depending on the choice of the parameters β,
a and b the possibility to pass through basins of attraction of local minima to
converge to the global minimum of the function.

This algorithm will be denoted as CG1.

8b) Second choice
β > 0 as a constant value.
α(x,u) = 1 − κ sgn(∇Tφ(x)u)

where κ > 0. Here again, the system (46) becomes nonsmooth, and can be
represented by the following set valued map:

ẇ(t) =

[

ẋ

u̇

]

=

[

α(x,u)u
−∇φ(x) − βu

]

∈ F(w) =

=







[(1 − κ)uT −∇Tφ(x) − βuT ]T if ∇Tφ(x)u > 0
[(1 + κ)uT −∇Tφ(x) − βuT ]T if ∇Tφ(x)u < 0
[(1 − [−κ , +κ])uT −∇Tφ(x) − βuT ]T if ∇Tφ(x)u = 0

(50)
where w(t) = [x(t)T u(t)T ]T . Here again, note that the only one equilibrium
point is w∗ = [xT

∗ 0T ]T , being x∗ any zero gradient point, for all κ > 0 . Note
that this equilibrium point includes the case κ = 1, because if u̇ = 0, then
∇φ(x) = −βu, so ∇Tφ(x)u ≤ 0 and the first case cannot reach an equilibrium
point; in the second case (1 + κ)u = 0, which implies u = 0, so ∇Tφ(x)u = 0
and this second case cannot reach the equilibrium point; in the third case if
∇Tφ(x)u = 0 and ∇Tφ(x) = −βu, then u = 0 and ∇φ(x) = 0 is the only one
equilibrium point.

Choosing (4) as candidate Liapunov function, its Lie derivative along the
trajectories defined by (50) is:

V̇ ∈ L̄FV (w) = {∇TV (w)v | v ∈ F(w)} =

=







−κ∇Tφ(x)u − βuT u < 0 if ∇Tφ(x)u > 0
κ∇Tφ(x)u − βuTu < 0 if ∇Tφ(x)u < 0
−βuT u ≤ 0 if ∇Tφ(x)u = 0

An analysis completely similar to that made in the former subsections allow
us to conclude that the point w∗ is asymptotically stable.

This algorithm will be denoted as CG2.

8c) Third choice
β > 0 as a constant value.

α(x,u) =

{

1 − κ
∇T φ(x)u

if |∇Tφ(x)u| > ǫ

1 if |∇Tφ(x)u| ≤ ǫ
(51)

where κ > 0 and ǫ > 0 is a constant value small enough.
Here again, for |∇Tφ(x)u| < ǫ, the algorithm (46) becomes equal to the

HBF ODE (6), with the parameter β = γ.
This is a nonsmooth system which can be represented by the following set

valued map:

22



ẇ(t) =

[

ẋ

u̇

]

=

[

α(x,u)u
−∇φ(x) − βu

]

∈ F(w) =

=



















[
(

1 − κ
∇T φ(x)u

)

uT −∇Tφ(x) − βuT ]T if |∇Tφ(x)u| > ǫ

[uT −∇Tφ(x) − βuT ]T if |∇Tφ(x)u| < ǫ
[[1 − κ/ǫ , 1]uT −∇Tφ(x) − βuT ]T if ∇Tφ(x)u = ǫ
[[1 , 1 + κ/ǫ]uT −∇Tφ(x) − βuT ]T if ∇Tφ(x)u = −ǫ

(52)
where w(t) := [x(t)T u(t)T ]T . Here again, the only one equilibrium point is
w∗ = [xT

∗ 0T ]T , where x∗ is any zero gradient point, because 0 ∈ F(w∗) and
0 /∈ F(w) for all w 6= w∗.

Choosing (4) as candidate Liapunov function, its Lie derivative along the
trajectories defined by (52) is:

V̇ ∈ L̄FV (w) = {∇TV (w)v | v ∈ F(w)} =

=















−κ− βuT u < 0 if |∇Tφ(x)u| > ǫ
−βuT u ≤ 0 if |∇Tφ(x)u| < ǫ
[−κ , 0] − βuT u < 0 if ∇Tφ(x)u = ǫ
[−κ , 0] − βuT u < 0 if ∇Tφ(x)u = −ǫ

Here again, the system (52) tends to the largest invariant set asymptotically,
and this set is {w∗}.

This algorithm will be denoted as CG3.

8d) Fourth choice
β > 0 as a constant value.
α(x,u) = 1 − κ∇Tφ(x)u

where κ > 0. Note that this is a smooth system, which can be represented by
the following first order ODE:

ẇ(t) =

[

ẋ

u̇

]

=

[

(1 − κ∇Tφ(x)u)u
−∇φ(x) − βu

]

(53)

where w(t) = [x(t)T u(t)T ]T .
Choosing (4) as candidate Liapunov function, its derivative along the tra-

jectories determined by (53) is:

V̇ (w) = ∇TV ẇ = −κ(∇Tφ(x)u)2 − βuT u ≤ 0

By Barbalat’s lemma, as V̇ is uniformly continuous, V̇ tends to zero when
t tends to infinity. Hence, ∇Tφ(x)u and u tend to zero too. By the controller
equation, ∇φ(x) tends to zero too. Therefore, the trajectories generated by
this system tend asymptotically to the only one equilibrium point, which is
w∗ = [xT

∗ 0T ]T , where x∗ is any zero gradient point.
This algorithm will be denoted as CG4.

8e) Fifth choice

23



β(x,u) =

{

b
u

T
u

if uTu > ǫ
1 if uTu ≤ ǫ

α(x,u) =

{

1 − a
∇T φ(x)u if |∇Tφ(x)u| > ǫ

1 if |∇Tφ(x)u| ≤ ǫ

(54)

where a > 0, b > 0 and ǫ > 0 is a constant value small enough.
This is a nonsmooth system, which can be represented by the following

nonautonomous piecewise continuous Filippov set valued map:

ẇ =

[

ẋ

u̇

]

=

[

α(x,u)u
−∇φ(x) − β(u)u

]

∈ F(w) =

=



























































































[
(

1 − a
∇T φ(x)u

)

uT −∇Tφ(x) − b
u

T
u
uT ]T if |∇Tφ(x)u| > ǫ and uT u > ǫ

[
(

1 − a
∇T φ(x)u

)

uT −∇Tφ(x) − uT ]T if |∇Tφ(x)u| > ǫ and uT u < ǫ

[uT −∇Tφ(x) − b
u

T
u
uT ]T if |∇Tφ(x)u| < ǫ and uT u > ǫ

[uT −∇Tφ(x) − uT ]T if |∇Tφ(x)u| < ǫ and uT u < ǫ

[
(

1 − a
∇T φ(x)u

)

uT −∇Tφ(x) −
[

1 , b
ǫ

]

uT ]T if |∇Tφ(x)u| > ǫ and uT u = ǫ

[uT −∇Tφ(x) −
[

1 , b
ǫ

]

uT ]T if |∇Tφ(x)u| < ǫ and uT u = ǫ
[
[(

1 − a
ǫ

)

, 1
]

uT −∇Tφ(x) − b
u

T
u
uT ]T if ∇Tφ(x)u = ǫ and uT u > ǫ

[
[(

1 − a
ǫ

)

, 1
]

uT −∇Tφ(x) − uT ]T if ∇Tφ(x)u = ǫ and uT u < ǫ
[
[

1 ,
(

1 + a
ǫ

)]

uT −∇Tφ(x) − b
u

T
u
uT ]T if ∇Tφ(x)u = −ǫ and uTu > ǫ

[
[

1 ,
(

1 + a
ǫ

)]

uT −∇Tφ(x) − uT ]T if ∇Tφ(x)u = −ǫ and uTu < ǫ
[
[(

1 − a
ǫ
, 1

)]

uT −∇Tφ(x) −
[

1 , b
ǫ

]

uT ]T if ∇Tφ(x)u = ǫ and uT u = ǫ
[
[

1 ,
(

1 + a
ǫ

)]

uT −∇Tφ(x) −
[

1 , b
ǫ

]

uT ]T if ∇Tφ(x)u = −ǫ and uTu = ǫ
(55)

where w(t) = [x(t)T u(t)T ]T . Note that the point w∗ = [xT
∗ 0T ]T is the only

one equilibrium point of (55) because 0 ∈ F(w∗) and 0 /∈ F(w) for all w 6= w∗.
Choosing (4) as candidate Liapunov function, the Lie derivative of (4) along

the trajectories determined by (55) can be defined as:

V̇ ∈ L̄FV (w) = {∇TV v | v ∈ F(w)} =

=















































































−a− b < 0 if |∇Tφ(x)u| > ǫ and uT u > ǫ
−a− uTu < 0 if |∇Tφ(x)u| < ǫ and uT u < ǫ
−b < 0 if |∇Tφ(x)u| < ǫ and uT u > ǫ
−uTu ≤ 0 if |∇Tφ(x)u| < ǫ and uT u < ǫ
−a− [ǫ , b] < 0 if |∇Tφ(x)u| > ǫ and uT u = ǫ
−[ǫ , b] < 0 if |∇Tφ(x)u| < ǫ and uT u = ǫ
[−a , 0] − b < 0 if ∇Tφ(x)u = ǫ and uTu > ǫ
[−a , 0] − uT u < 0 if ∇Tφ(x)u = ǫ and uTu < ǫ
[−a , 0] − b < 0 if ∇Tφ(x)u = −ǫ and uTu > ǫ
[−a , 0] − uT u < 0 if ∇Tφ(x)u = −ǫ and uTu < ǫ
[−a , 0] − [ǫ , b] < 0 if ∇Tφ(x)u = ǫ and uTu = ǫ
[−a , 0] − [ǫ , b] < 0 if ∇Tφ(x)u = −ǫ and uTu = ǫ

Here again, an analysis completely similar to that made in the former sub-
section allow us to conclude that the trajectories generated by (55) converge
asymptotically to an equilibrium point w∗.

24



This algorithm will be denoted as CG5.

With the presented choices of plants and controllers, as well as with the
mentioned choices of the parameters, we can enunciate the following theorem:

Theorem 3.2 The neural nets reported in Table 1, with their parameters cho-
sen as showed in Table 2, make the time derivative (5) of the control Liapunov
function (4) negative definite, thus guaranteing that the trajectories generated
by these systems converge asymptotically to a state such that [∇φ(x) u] = [0 0].

Note that the equilibrium point [∇φ(x) u] = [0 0] does not necessarily cor-
respond to the global minimum of the objective function, but only to a local
one. However, Lemma 2.1 suggests that there always exist parameter values for
each algorithm, such that the trajectories converge to the global minimum x∗.

It is clear that there exist other choices of α(x,u) and β(x,u) that make
the Lie derivative of (4) negative definite. The choices presented here are only
some of the simplest ones.

The general conclusion so far is that each new choice of plant and controller,
as well as each choice of control Liapunov function leads to a different algorithm.

4 Computational experiments

In this section, the algorithms presented in the previous section will be tested
with a suite of benchmark scalar functions, well known in the optimization
literature.

These function are a scalar function of one variable, the inverted camelback
function, the Rastrigin function, the Ackley function, and the Griewank func-
tion. All these functions are nonconvex, multimodal and have a unique finite
global minimum.

The nets were implemented with MATLAB 2007, and the corresponding
ODEs discretized by the forward Euler method with a constant step size of
0.01 s. The simulations were carried out during 10 s.

4.1 Simulations with a scalar nonconvex function of one

variable

The function chosen in this subsection is the shifted sinc function:

φ(x) = − sin(x)

x
+ 1 : R → R (56)

This function has multiple local minima and only one global minimum at
x∗ = 0. The value of the function at the global minimum is φ(x∗) = 0.

Figure 4 shows the value of the function vs. the variable x.
The initial point was chosen x0 = −20, which is a local minimum, and the

initial value of the control variable as u0 = 20. In all the tests, in the algorithms
which have a parameter ǫ, it was chosen as ǫ = 0.1. The other parameters were
adjusted by hand tuning in such a way to achieve the fastest convergence to the
global minimum. These parameters are reported in Table 3.

25



Table 1: Neural networks represented as second order continuous time algo-
rithms to minimize nonconvex scalar functions deduced with CLF methodology

name plant controller ODE

MI1 ẋ = u u̇ = −κ sgn(u) −∇φ ẍ + κ sgn(ẋ) + ∇φ = 0

MI2 ẋ = u u̇ = −κ(∇2φ)2u −∇φ ẍ + κ(∇2φ)2ẋ + ∇φ = 0

MI3 ẋ = ∇−2φu u̇ = −κu −∇−2φ∇φ ∇̈φ + κ∇̇φ + ∇−2φ∇φ = 0

MI4 ẋ = ∇2φu u̇ = −κu −∇2φ∇φ
ẍ +(κI − ∇̇2φ∇−2φ)ẋ

+(∇2φ)2∇φ = 0

MI5 ẋ = ∇−2φu
u̇ = −(I − γI + a∇−2φ)u

−(γI + b∇−2φ)∇φ

∇̈φ +(I − γI + a∇−2φ)∇̇φ

+(γI + b∇−2φ)∇φ = 0

DIN ẋ = u u̇ = −∇φ − (aI + b∇2φ)u ẍ + (aI + b∇2φ)ẋ + ∇φ = 0

HBF ẋ = u u̇ = −∇φ − γu ẍ + γẋ + ∇φ = 0

gHBF ẋ = u u̇ = −γ(x,u)u − µ(x,u)∇φ ẍ + γ(x,u)ẋ + µ(x,u)∇φ = 0

CG ẋ = α(x,u)u u̇ = −∇φ − β(x,u)u
ẍ +α∇φ + βẋ

−
[

∂α
∂x

T
ẋ + ∂α

∂u

T
u̇
]

u = 0

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

φ(
x)

Scalar function φ(x) vs. x

Figure 4: Scalar function of one variable vs. its independent variable.

26



Table 2: Parameters and switching laws used by the different nets
name parameters

MI1 κ > 0

MI2 κ > 0

MI3 κ > 0

MI4 κ > 0

MI5 γ ∈ R, a + b > 0

DIN a > 0, b > 0

HBF γ > 0

HBF1 γ > 0, µ(x,u) =











1 − γ u
T
u

∇T φ(x)u
+ a if ∇T φ(x)u > ǫ

1 − γ u
T
u

∇T φ(x)u
− b if ∇T φ(x)u < −ǫ

1 if |∇T φ(x)u| ≤ ǫ

, a > 0, b > 0

HBF2 γ > 0, µ(x,u) = 1 + κ sgn(∇T φ(x)u), κ > 0

HBF3 γ > 0, µ(x,u) =

{

1 + κ 1
∇T φ(x)u

if |∇T φ(x)u| > ǫ

1 if |∇T φ(x)u| ≤ ǫ
, κ > 0

HBF4 γ > 0, µ(x,u) = 1 + κ∇T φ(x)u, κ > 0

HBF5

γ(x,u) =

{

b

u
T
u

if uT u > ǫ

1 if uT u ≤ ǫ

µ(x,u) =

{

1 + a

∇T φ(x)u
if |∇T φ(x)u| > ǫ

1 if |∇T φ(x)u| ≤ ǫ

, a > 0, b > 0

HBF6

µ =

{

µ1 > 1 if ∇T φ(x)u > 0

µ2 | 0 < µ2 < 1 if ∇T φ(x)u ≤ 0

γ(x,u) =

{

(1 − µ)∇
T φ(x)u

u
T
u

+ a if uT u > ǫ

a if uT u ≤ ǫ

, a > 0

CG1 β > 0, α(x,u) =











1 + β u
T

u

∇T φ(x)u
− a if ∇T φ(x)u > ǫ

1 + β u
T

u

∇T φ(x)u
+ b if ∇T φ(x)u < −ǫ

1 if |∇T φ(x)u| ≤ ǫ

, a > 0, b > 0

CG2 β > 0, α(x,u) = 1 − κ sgn(∇T φu), κ > 0

CG3 β > 0, α(x,u) =

{

1 − κ

∇T φ(x)u
if |∇T φ(x)u| > ǫ

1 if |∇T φ(x)u| ≤ ǫ
, κ > 0

CG4 β > 0, α(x,u) = 1 − κ∇T φu, κ > 0

CG5

β(x,u) =

{

b

u
T
u

if uT u > ǫ

1 if uT u ≤ ǫ

α(x,u) =

{

1 − a

∇T φ(x)u
if |∇T φ(x)u| > ǫ

1 if |∇T φ(x)u| ≤ ǫ

, a > 0, b > 0

27



0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Value of the scalar function vs. time

t [s]

φ(
x)

MI1
MI2
MI3
MI5
DIN

0 1 2 3 4 5 6 7
−80

−60

−40

−20

0

20

40

t [s]

x

Trajectories vs. time for the scalar function

MI1
MI2
MI3
MI5
DIN

Figure 5: Value of the function and trajectories vs. time with the scalar function
of one variable for the trajectories generated by the algorithms MI1, MI2, MI3,
MI5 and DIN. Initial point x0 = −20, initial value of the control variable u0 =
20.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Value of the scalar function vs. time

t [s]

φ(
x)

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

0 1 2 3 4 5 6
−15

−10

−5

0

5

t [s]

x

Trajectories vs. time for the scalar function

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

Figure 6: Value of the function and trajectories vs. time with the scalar function
of one variable for the trajectories generated by the gHBF algorithms. Initial
point x0 = −20, initial value of the control variable u0 = 20.

Figure 5 shows the value of the function and the trajectories vs. time for
the trajectories generated by the algorithms MI1, MI2, MI3, MI5 and DIN. It
was not possible to find values of the parameters to achieve convergence to the
global minimum for the algorithm MI4.

Figure 6 shows the value of the function and the trajectories vs. time for the
trajectories generated by the gHBF algorithms. Note that all the variations of
the HBF algorithm achieve faster convergence than that of the HBF algorithm.

Figure 7 shows the value of the function and the trajectories vs. time for
the trajectories generated by the CG algorithms. Note that, excepting the
CG4 algorithm, all the others present a very much faster convergence than that
presented by the gHBF algorithms.

Finally, we emphasize that, excepting the MI4 algorithm, all the other ones
generated trajectories that were able to pass three local minima (including the
initial point), to converge to the global minimum.

28



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Value of the scalar function vs. time

t [s]

φ(
x)

CG1
CG2
CG3
CG4
CG5

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

5

10

t [s]

x

Trajectories vs. time for the scalar function

CG1
CG2
CG3
CG4
CG5

Figure 7: Value of the function and trajectories vs. time with the scalar function
of one variable for the trajectories generated by the CG algorithms. Initial point
x0 = −20, initial value of the control variable u0 = 20.

Table 3: Parameters used by the algorithms in the experiments reported in
section 4.1 with the scalar function of one variable, where - means that the
trajectory does not converge to a minimum in 10 s.

Scalar function

MI1 κ = 10.1

MI2 κ = 69

MI3 κ = 0.9

MI4 -

MI5 γ = 0.2, a = 1, b = 1

DIN a = 1, b = 13

HBF γ = 1

HBF1

γ = 15, ǫ = 0.1

µ =











1 − γ u
T
u

∇T φu

+ 18 ∇T φu > ǫ

1 − γ u
T
u

∇T φu

− 4 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

HBF2 γ = 0.6, κ = 22.5

HBF3 γ = 0.61, κ = 27.7, ǫ = 0.1

HBF4 γ = 0.6, κ = 17.5

HBF5 a = 8, b = 127.3, ǫ = 0.1

HBF6
ǫ = 0.1

µ1 = 1297, µ2 = 0.1
a = 1

CG1

β = 10, ǫ = 0.1

α =







34.1 ∇T φu > ǫ

1 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

CG2 β = 5, κ = 104

CG3 β = 5, κ = 14.07, ǫ = 0.1

CG4 β = 1, κ = 0.28

CG5 ǫ = 0.1, a = 0.1, b = 130

29



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[2  1]T

 

 

[2;1]

mi1
mi3
mi5
DIN
mi2
mi4

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

Error norm of the algorithms. Camelback function. x
0
=[2 1]T

t [s]

||x
||

mi1
mi3
mi5
DIN
mi2
mi4

Figure 8: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the algorithms
MI1, MI2, MI3, MI4, MI5 and DIN. Initial point x0 = [2 1]T , initial value of
the control variable u0 = [0 0]T .

4.2 Simulations with the inverted camelback function

The inverted camelback function, popular in the literature on global optimiza-
tion, was chosen as objective function in this subsection:

φ(x1, x2) = ax2
1 + bx4

1 + cx6
1 − x1x2 + dx2

2 + ex4
2 : R

2 → R (57)

with the following constants a = −2, b = 1.05, c = − 1
6 , d = −1 and e = 0.

With these constants, the inverted camelback function has a global minimum
at x∗ = [0 0]T , two local minima at x = [−1.7475 0.8737]T and x = [1.7475 −
0.8737]T , and two saddle points at x = [−1.0705 0.5352]T and x = [1.0705 −
0.5352]T . The value of the inverted camelback function at the global minimum
is φ(x∗) = 0.

The algorithms were tested from three initial points, x0 = [2 1]T , x0 =
[−1.5 − 1.5]T and x0 = [1.7475 − 0.8737]T , which corresponds to a local
minimum. From the initial point x0 = [2 1]T the initial value of the control
variable was chosen as u0 = [0 0]T , from the initial point x0 = [−1.5 − 1.5]T ,
the initial value of the control variable was chosen as u0 = [1 1]T , and from the
initial point x0 = [1.7475 − 0.8737]T , the initial value of the control variable
was chosen as u0 = [−3 3]T .

Figure 8 shows the trajectories of the algorithms MI1, MI2, MI3, MI4, MI5
and DIN in the state space and the norms of the state variable ‖x‖ versus
time from the initial point x0 = [2 1]T with initial value of the control variable
u0 = [0 0]T . The parameters used by the algorithms were chosen by hand tuning
in such a way to try convergence to the global minimum. These parameters are
reported in Table 4. Note that only the trajectory generated by MI1 algorithm
achieves this goal, even though the convergence is slow (greater than 10 s).

Figure 9 shows the trajectories generated by the gHBF algorithms in the
state space and the error norms of the trajectories versus time from the initial
point x0 = [2 1]T with initial value of the control variable u0 = [0 0]T . The
parameter γ in the HBF algorithm was chosen as γ = 1.7, because this is the
maximum value of this parameter for the trajectory to converge to the global
minimum. In the other algorithms that have a constant friction parameter γ,

30



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[2 1]T

[2;1]

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

t [s]

||x
||

Error norm of the algorithms. Camelback function. x
0
=[2 1]T

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

Figure 9: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the gHBF algo-
rithms. Initial point x0 = [2 1]T , initial value of the control variable u0 = [0 0]T .

that is, HBF1, HBF2, HBF3 and HBF4, this parameter was also chosen as
γ = 1.7 for comparative purposes. In the algorithms that have a parameter ǫ,
it was chosen as ǫ = 0.1. The other parameters were chosen by hand tuning
in such a way to achieve the fastest convergence to the global minimum, in
the cases where this convergence was possible. All the parameters used by the
algorithms are reported in Table 4. Note that the trajectories generated by the
algorithms HBF2 and HBF4 do not converge to the global minimum, but to
the closer local one. It is possible that with another value of the parameter
γ, different to γ = 1.7, the goal may be achieved, but this possibility was not
tested. Note that the trajectories generated by the algorithms HBF1 and HBF6
converge to the global minimum faster than the trajectory generated by the
HBF algorithm.

Figure 10 shows the trajectories generated by the CG algorithms in the
state space and the error norms of the trajectories versus time from the initial
point x0 = [2 1]T with initial value of the control variable u0 = [0 0]T . In the
algorithms that have a constant parameter β, i.e. CG1, CG2, CG3 and CG4,
it was chosen as β = 1.7, the same value of γ used in the gHBF algorithms,
for comparative purposes with respect to the curves showed in figure 9. In
the algorithms that have a parameter ǫ (CG1, CG3 and CG5), it was chosen
as ǫ = 0.1. The other parameters were chosen by hand tuning in such a way
to achieve the fastest convergence to the global minimum. These parameters
are reported in Table 4. Note that all the trajectories converge to the global
minimum, and faster than the trajectories generated by the gHBF, MI and DIN
algorithms from the same initial point.

Figure 11 shows the trajectories generated by the algorithms MI1, MI2, MI3,
MI4, MI5 and DIN in the state space and the error norms versus time from
the initial point x0 = [−1.5 − 1.5]T with initial value of the control variable
u0 = [1 1]T . The values of the parameters used by the algorithms were chosen
by hand tuning in such a way to try convergence to the global minimum. These
parameters are reported in Table 4. Note that MI3 and MI5 do not achieve
convergence to the global minimum, but to the closer local one.

Figure 12 shows the trajectories generated by the gHBF algorithms in the
state space and the error norms of the trajectories versus time from the initial

31



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[2 1]T

[2;1]

CG1
CG2
CG4
CG3
CG5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

t [s]
||x

||

Error norm of the algorithms. Camelback function. x
0
=[2 1]T

CG1
CG2
CG4
CG3
CG5

Figure 10: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the CG algorithms.
Initial point x0 = [2 1]T , initial value of the control variable u0 = [0 0]T .

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

Trajectories in the state space. Camelback function. x
0
=[−1.5  −1.5]T

 

 

[−1.5;−1.5]
DIN
mi2
mi4

mi1
mi3
mi5

∇φ
2
=0

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

t [s]

||x
||

Error norm of the algorithms. Camelback function. x
0
=[−1.5 −1.5]T

mi1
mi3
mi5
DIN
mi2
mi4

Figure 11: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the algorithms
MI1, MI2, MI3, MI4, MI5 and DIN. Initial point x0 = [−1.5 − 1.5]T , initial
value of the control variable u0 = [1 1]T .

32



−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2
∇φ

1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[−1.5 −1.5]T

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

[−1.5;−1.5]

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

t [s]

||x
||

Error norm of the algorithms. Camelback function. x
0
=[−1.5 −1.5]T

HBF
HBF1
HBF2
HBF4
HBF6
HBF3
HBF5

Figure 12: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the gHBF algo-
rithms. Initial point x0 = [−1.5 − 1.5]T , initial value of the control variable
u0 = [1 1]T .

point x0 = [−1.5 − 1.5]T and with an initial value of the control variable
u0 = [1 1]T . In all the algorithms that have a constant γ parameter, that is,
HBF, HBF1, HBF2, HBF3 and HBF4, it was chosen as γ = 2.2 because this
is the value (tested by hand tuning) which achieve the fastest convergence to
the global minimum of the trajectory generated by the HBF algorithm. The
parameter ǫ was chosen as ǫ = 0.1 in all the algorithms that use this parameter
(HBF1, HBF3, HBF5 and HBF6). The other parameters were chosen, also
by hand tuning, in such a way to achieve the fastest convergence to the global
minimum. These parameters are reported in Table 4. The trajectories generated
by all the gHBF algorithms converge to the global minimum from this initial
point, but only the one generated by HBF1 is very much faster than the one
generated by the HBF algorithm.

Figure 13 shows the trajectories generated by the CG algorithms in the state
space and the error norms of the trajectories versus time from the initial point
x0 = [−1.5 − 1.5]T with initial value of the control variable u0 = [1 1]T . In the
algorithms that have a constant parameter β, that is CG1, CG2, CG3 and CG4,
it was chosen as β = 2.2, the same value of γ used in the gHBF algorithms from
this initial point, for comparative purposes. In all the cases, in the algorithms
that have a parameter ǫ, it was chosen as ǫ = 0.1. The other parameters were
chosen by hand tuning in such a way to achieve the fastest convergence to the
global minimum. These parameters are reported in Table 4. All the trajectories
converge to the global minimum from this initial point, and the ones generated
by CG1, CG2 and CG4 converge very much faster than their gHBF, DIN and
MI competitors.

Figure 14 shows the trajectories generated by the algorithms MI1, MI2, MI3,
MI4, MI5 and DIN in the state space and the error norms of the trajectories
versus time from the initial point x0 = [1.7475 − 0.8737]T and with an initial
value of the control variable u0 = [−3 3]T . The parameters were chosen by
hand tuning in such a way to achieve convergence to the global minimum, in
the cases where it was possible. These parameters are reported in Table 4. Note
that only the trajectories generated by MI1, MI2 and DIN converge to the global
minimum.

33



−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[−1.5 −1.5]T

[−1.5;−1.5]

CG1
CG2
CG4
CG3
CG5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

t [s]
||x

||

Error norm of the algorithms. Camelback function. x
0
=[−1.5 −1.5]T

CG1
CG2
CG4
CG3
CG5

Figure 13: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the CG algorithms.
Initial point x0 = [−1.5 −1.5]T , initial value of the control variable u0 = [1 1]T .

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Trajectories in the state space. Camelback function. x
0
=[1.7475 −0.9737]T

∇φ
1
=0

∇φ
2
=0[1.7475;−0.8737]

mi1
mi2
mi3
mi4
mi5
DIN

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

t [s]

||x
||

Error norm of the algorithms. Camelback function.x
0
=[1.7475 −0.8737]T

mi1
mi2
mi3
mi4
mi5
DIN

Figure 14: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the algorithms
MI1, MI2, MI3, MI4, MI5 and DIN. Initial point x0 = [1.7475 − 0.8737]T ,
initial value of the control variable u0 = [−3 3]T .

34



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2
Trajectories in the state space. Camelback function. x

0
=[1.7475 −0.8737]T

∇φ
1
=0

∇φ
2
=0

HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t [s]

||x
||

Error norm of the algorithms. Camelback function. x
0
=[1.7475 −0.8737]T

 

 
HBF
HBF1
HBF2
HBF3
HBF4
HBF5
HBF6

Figure 15: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the gHBF algo-
rithms. Initial point x0 = [1.7475 −0.8737]T , initial value of the control variable
u0 = [−3 3]T .

Figure 15 shows the trajectories generated by the gHBF algorithms in the
state space and the error norms of the trajectories versus time from the initial
point x0 = [1.7475 − 0.8737]T and with an initial value of the control variable
u0 = [−3 3]T . In all the algorithms that have a constant parameter γ, that is,
HBF, HBF1, HBF2, HBF3 and HBF4, it was chosen as γ = 2.3 because this
is the value (tested by hand tuning) to achieve the fastest convergence to the
global minimum of the HBF algorithm. The parameter ǫ was chosen as ǫ = 0.1
in all the algorithms that use this parameter (HBF1, HBF3, HBF5 and HBF6).
The other parameters were chosen, also by hand tuning, in such a way to achieve
the fastest convergence to the global minimum. These parameters are reported
in Table 4. The trajectories generated by all the gHBF algorithms converge to
the global minimum from this initial point, but only the one generated by HBF6
is a little faster than the one generated by the HBF algorithm. In HBF2 and
HBF4, the parameter κ was chosen as κ = 0.1, i.e. these algorithms becomes
similar to the HBF algorithm.

Figure 16 shows the trajectories generated by the CG algorithms in the
state space and the error norms of the trajectories versus time from the initial
point x0 = [1.7475 − 0.8737]T and with an initial value of the control variable
u0 = [−3 3]T . In all the algorithms that have a constant parameter β, that
is, CG1, CG2, CG3 and CG4, it was chosen as β = 2.3 because this is the
value of the friction parameter γ used in the gHBF algorithms from this initial
point. The parameter ǫ was chosen as ǫ = 0.1 in all the algorithms that use
this parameter. The other parameters were chosen, also by hand tuning, in
such a way to achieve the fastest convergence to the global minimum. These
parameters are reported in Table 4. The trajectories generated by all the CG
algorithms converge to the global minimum from this initial point, and those
generated by CG1, CG2 and CG5, converge very much faster than the one
generated by the HBF algorithm.

Table 4 reports the parameters used with the inverted camelback function.

35



−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

∇φ
1
=0

∇φ
2
=0

Trajectories in the state space. Camelback function. x
0
=[1.7475  −0.8737]T

CG1
CG2
CG3
CG4
CG5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

t [s]

||x
||

Error norm of the algorithms. Camelback function. x
0
=[1.7475 −0.8737]T

 

 
CG1
CG2
CG3
CG4
CG5

Figure 16: Trajectories in the state space and error norms vs. time with the
inverted camelback function for the trajectories generated by the CG algorithms.
Initial point x0 = [1.7475 − 0.8737]T , initial value of the control variable u0 =
[−3 3]T .

Table 4: Parameters used by the algorithms in the experiments reported in
section 4.2 with the inverted camelback function.

Camelback

x0 = [2 1]T u0 = [0 0]T x0 = [−1.5 − 1.5]T u0 = [1 1]T x0 = [1.7475 − 0.8737]T u0 = [−3 3]T

MI1 κ = 0.4 κ = 1.2 κ = 0.97

MI2 κ = 0.1 κ = 0.5 κ = 0.4

MI3 κ = 0.1 κ = 0.4 κ = 0.7

MI4 κ = 12 κ = 1.3 κ = 14

MI5 γ = 0.5, a = 3, b = 0.7 γ = 0.2, a = 1, b = 0.7 γ = 0.2, a = 0.5, b = 0.8

DIN a = 1, b = 1 a = 1, b = 1 a = 2.2, b = 1.1

HBF γ = 1.7 γ = 2.2 γ = 2.3

HBF1

γ = 1.7, ǫ = 0.1
µ =



















1 − γ uT u

∇T φu
+ 20 ∇T φu > ǫ

1.2 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

γ = 2.2, ǫ = 0.1
µ =























1 − γ uT u

∇T φu
+ 100 ∇T φu > ǫ

1 − γ uT u

∇T φu
− 1 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

γ = 2.3 ǫ = 0.1
µ =



















1 − γ uT u

∇T φu
+ 10 ∇T φu > ǫ

2.8 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

HBF2 γ = 1.7, κ = 0.5 γ = 2.2, κ = 85 γ = 2.3, κ = 0.1

HBF3 γ = 1.7, κ = 0.5, ǫ = 0.1 γ = 2.2, κ = 0.6, ǫ = 0.1 γ = 2.3, κ = 37.4, ǫ = 0.1

HBF4 γ = 1.7, κ = 0.5 γ = 2.2, κ = 0.2 γ = 2.3, κ = 0.1

HBF5 a = 0.1, b = 0.5, ǫ = 0.1 a = 10, b = 0.1, ǫ = 0.1 a = 90, b = 0.1, ǫ = 0.1

HBF6
ǫ = 0.1

µ1 = 1.5, µ2 = 0.6
a = 1.7

ǫ = 0.1
µ1 = 10, µ2 = 0.3

a = 2

ǫ = 0.1
µ1 = 5.8, µ2 = 0.9

a = 2.2

CG1

β = 1.7, ǫ = 0.1
α =























1 + β uT u

∇T φu
− 1 ∇T φu > ǫ

1 + β uT u

∇T φu
+ 100 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

β = 2.2, ǫ = 0.1
α =



















1 + β uT u

∇T φu
− 10 ∇T φu > ǫ

27 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

β = 2.3, ǫ = 0.1
α =



















1 + β uT u

∇T φu
− 8 ∇T φu > ǫ

135 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

CG2 β = 1.7, κ = 1 β = 2.2, κ = 22 β = 2.3, κ = 24.2

CG3 β = 1.7, ǫ = 0.1, κ = 40 β = 2.2, ǫ = 0.1, κ = 1 β = 2.3, ǫ = 0.1, κ = 4.2

CG4 β = 1.7, κ = 1580 β = 2.2, κ = 42 β = 2.3, κ = 9.2

CG5 ǫ = 0.1, a = 50, b = 70 ǫ = 0.1, a = 2, b = 5 a = 12, b = 80, ǫ = 0.1

36



0 1 2 3 4 5 6
−20

0

20

40

60

80

100
Value of the Rastrigin function vs. time

t [s]

φ(
x)

mi1
mi3
mi5
DIN
mi2
mi4

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16
Error norm of the algorithms. Rastrigin function

t [s]

||x
||

mi1
mi3
mi5
DIN
mi2
mi4

Figure 17: Value of the Rastrigin function and error norms vs. time for the
trajectories generated by the algorithms MI1, MI2, MI3, MI4, MI5 and DIN.
Initial point x0i

= −1, initial value of the control variable u0i
= 6 for all

i ∈ {1, · · · , 10}.

4.3 Simulations with the Rastrigin function

The Rastrigin function, popular in the global optimization literature, was chosen
as objective function in this section:

φ(x) =

N
∑

i=1

x2
i − cos(2πxi) : R

N → R (58)

This function has several local minima and a unique global minimum at
x∗ = 0. The value of the function at the minimum is φ(x∗) = −N , where N is
the number of variables. This number was chosen as N = 10 for the numerical
experiments reported here. In all the experiments, the initial point was chosen
as x0i

= −1 and the initial value of the control variable as u0i
= 6 for all

i ∈ {1, · · · , N}.
Figure 17 shows the value of the Rastrigin function versus time and the

error norms of the trajectories versus time for the trajectories generated by
the algorithms MI1, MI2, MI3, MI4, MI5 and DIN. The parameters used by
the algorithms were chosen by hand tuning in such a way to achieve the fastest
convergence to the global minimum, in the cases where convergence was possible.
These parameters are reported in Table 5. Note that only the trajectories
generated by MI1, MI3 and DIN converge to the global minimum, the other
trajectories converge to a local minimum, and only the trajectory generated by
MI1 presents a fast convergence.

Figure 18 shows the value of the function and the error norms versus time
of the trajectories generated by the gHBF algorithms. In the algorithms that
have a constant friction parameter γ (HBF, HBF1, HBF2, HBF3 and HBF4)
it was chosen as γ = 5. The other parameters were chosen by hand tuning in
such a way to achieve the fastest convergence to the global minimum. These
parameters are reported in Table 5. In algorithms that have a parameter ǫ
(HBF1, HBF3, HBF5 and HBF6), it was chosen as ǫ = 0.1. It was not possible
to find parameters of the HBF5 algorithm to achieve trajectory convergence to a
minimum, and the trajectory generated by HBF4 converges to a local minimum.
The trajectories generated by HBF1, HBF2, HBF3 and HBF6 converge faster

37



0 0.5 1 1.5 2
−10

−8

−6

−4

−2

0

2

t [s]

φ(
x)

Value of the Rastrigin function vs. time. gHBF algorithms with γ=5

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF
γ=5

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

||x
||

t [s]

Error norm of the gHBF algorithms with γ=5. Rastrigin function

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF γ=5

Figure 18: Value of the Rastrigin function and error norms vs. time for the tra-
jectories generated by the gHBF algorithms with parameter γ = 5. Initial point
x0i

= −1, initial value of the control variable u0i
= 6 for all i ∈ {1, · · · , 10}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

t [s]

φ(
x)

Value of the Rastrigin function vs. time. CG algorithms with β=5

CG1
CG2
CG4
CG3
CG5

CG
β=5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t [s]

||x
||

Error norm of the CG algorithms with β=5. Rastrigin function

CG1
CG2
CG4
CG3
CG5

CG
β=5

Figure 19: Value of the Rastrigin function and error norms vs. time for the
trajectories generated by the CG algorithms with parameter β = 5. Initial point
x0i

= −1, initial value of the control variable u0i
= 6 for all i ∈ {1, · · · , 10}.

than the one generated by the HBF algorithm.
Figure 19 shows the value of the function and the error norms versus time

of the trajectories generated by the CG algorithms. In the algorithms that have
a constant parameter β (CG1, CG2, CG3 and CG4), it was chosen as β = 5
to compare with the trajectories generated by the algorithms gHBF with the
same value of the parameter γ, which are showed in figure 18. In the algorithms
that have a parameter ǫ (CG1, CG3 and CG5), it was chosen as ǫ = 0.1. Also
here, the other parameters were chosen by hand tuning to achieve the fastest
convergence to the global minimum. Note that all the trajectories converge to
the global minimum and faster than the ones generated by the gHBF algorithms,
specially those generated by CG1 and CG2 .

Figure 20 shows the value of the function and the error norms versus time of
the trajectories generated by the gHBF algorithms, from the same initial point
x0i

= −1 and with the same initial value of the control variable u0i
= 6 for all

i ∈ {1, · · · , 10}, but in this case, in the algorithms that have a constant friction
parameter γ (HBF, HBF1, HBF2, HBF3 and HBF4), it was chosen as γ = 10.
In the algorithms that have a parameter ǫ (HBF1, HBF3, HBF5 and HBF6),

38



0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

t [s]

φ(
x)

Value of the Rastrigin function vs. time. gHBF algorithms with γ=10

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF γ=10

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

t [s]

||x
||

Error norm of the gHBF algorithms with γ=10. Rastrigin function

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF γ=10

Figure 20: Value of the Rastrigin function and error norms vs. time for the tra-
jectories generated by the gHBF algorithms with parameter γ = 10. Initial point
x0i

= −1, initial value of the control variable u0i
= 6 for all i ∈ {1, · · · , 10}.

it was chosen as ǫ = 0.1. Also here, the other parameters were chosen by hand
tuning in such a way to achieve the fastest convergence to the global minimum.
These parameters are reported in Table 5. The trajectory generated by HBF6
is the same showed in figure 18, because this algorithm also has not a constant
parameter γ, and the curves were repeated here only for comparative purposes.
The trajectories generated by the algorithms HBF1 and HBF6 converge to the
global minimum faster than the one generated by the HBF with this value of
the parameter γ.

Figure 21 shows the value of the function and the error norms versus time
of the trajectories generated by the CG algorithms. In the algorithms that
have a constant parameter β (CG1, CG2, CG3 and CG4), it was chosen as
β = 10, for comparative purposes with respect to the trajectories generated by
the gHBF algorithms with the same value of the parameter γ and reported in
figure 20. In the algorithms that have a parameter ǫ (CG1, CG3 and CG5), it
was chosen as ǫ = 0.1. Here again, the other parameters were chosen by hand
tuning in such a way to achieve the fastest convergence to the global minimum.
These parameters are reported in Table 5. Also here, CG5 algorithm does
not have a constant parameter β, so the curves corresponding to its trajectory
are the same that those showed in figure 19 and they are repeated here for
comparative purposes. Note that the convergence of the trajectories is faster
than the convergence of the ones generated by the gHBF algorithms with the
same value of the parameter γ, which are showed in figure 20, specially the ones
generated by CG1 and CG2.

Table 5 reports the parameters used by the algorithms with the Rastrigin
function.

4.4 Simulations with the Ackley function

The Ackley function can be expressed as:

φ(x) = −20 exp−0.2
√

1
N

∑

N
i=1 x2

i − exp
1
N

∑ N
i=1 cos(2πxi) : R

N → R (59)

39



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

t [s]

φ(
x)

Value of the Rastrigin function vs. time. CG algorithms with β=10

CG1
CG2
CG4
CG5
CG3

CG
β=10

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t [s]

||x
||

Error norm of the CG algorithms with β=10. Rastrigin function

CG1
CG2
CG4
CG5
CG3

CG
β=10

Figure 21: Value of the Rastrigin function and error norms vs. time for the tra-
jectories generated by the CG algorithms with parameter β = 10. Initial point
x0i

= −1, initial value of the control variable u0i
= 6 for all i ∈ {1, · · · , 10}.

Table 5: Parameters used by the algorithms in the experiments reported in
section 4.3 with the Rastrigin function, where - means that the trajectory does
not converge to a minimum in 10 s.

Rastrigin

MI1 κ = 20

MI2 κ = 0.2

MI3 κ = 0.2

MI4 κ = 20

MI5 γ = 1, a = 20, b = 20

DIN a = 0.1, b = 0.1

HBF γ = 5 γ = 10

HBF1

γ = 5, ǫ = 0.1

µ =











1 − γ u
T
u

∇T φu

+ 9 ∇T φu > ǫ

1.7 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

γ = 10, ǫ = 0.1

µ =











1 − γ u
T
u

∇T φu

+ 7 ∇T φu > ǫ

1.7 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

HBF2 γ = 5, κ = 0.7 γ = 10, κ = 0.2

HBF3 γ = 5, κ = 4, ǫ = 0.1 γ = 10, κ = 0.8, ǫ = 0.1

HBF4 γ = 5, κ = 1 γ = 10, κ = 1

HBF5 -

HBF6
ǫ = 0.1

µ1 = 10, µ2 = 0.3
a = 7

CG1

β = 5, ǫ = 0.1

α =











1 + β u
T
u

∇T φu
− 20 ∇T φu > ǫ

1 + β u
T
u

∇T φu

+ 20 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

β = 10, ǫ = 0.1

α =











1 + β u
T
u

∇T φu
− 9 ∇T φu > ǫ

1 + β u
T
u

∇T φu

+ 10 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

CG2 β = 5, κ = 10 β = 10, κ = 7

CG3 β = 5, ǫ = 0.1, κ = 1.5 β = 10, ǫ = 0.1, κ = 0.2

CG4 β = 5, κ = 0.4 β = 10, κ = 0.5

CG5 ǫ = 0.1, a = 200, b = 100

40



0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

t [s]

φ(
x)

Value of the Ackley function vs. time. u
0i

=10

mi1
mi5
DIN
mi2

0 1 2 3 4 5
0

5

10

15

20

25

30

35

t [s]

||x
||

Error norm of the algorithms. Ackley function. u
0i

=10

mi1
mi5
DIN
mi2

Figure 22: Value of the Ackley function and error norms vs. time for the
trajectories generated by the algorithms MI1, MI2, MI3, MI4, MI5 and DIN.
Initial point x0i

= −10, initial value of the control variable u0i
= 10 for all

i ∈ {1, · · · , 10}.

where N is the number of the variables which was chosen as N = 10 for the
numerical experiments reported here.

The Ackley function has several local minima and a unique global minimum
at x∗ = 0. The value of the function at the global minimum is φ(x∗) = 0. In all
the experiments, the initial point was chosen as x0i

= −10 and the initial value
of the control variable as u0i

= 10, and u0i
= 20 for all i ∈ {1, · · · , N}.

Figure 22 shows the value of the Ackley function versus time and the error
norms of the trajectories versus time for the trajectories generated by the algo-
rithms MI1, MI2, MI3, MI4, MI5 and DIN for the initial value of the control
variable u0i

= 10. The parameters were chosen by hand tuning in such a way to
achieve convergence to the global minimum, in the cases where it was possible,
and to achieve the fastest convergence. These parameters are reported in Table
6. Note that only the trajectories generated by MI1 and DIN converge to the
global minimum, whereas trajectories generated by MI5 and MI2 converge to
local minima. It was not possible to find parameters by hand tuning to achieve
convergence of the trajectories generated by MI3 and MI4.

Figure 23 shows the value of the Ackley function and the error norms versus
time for the trajectories generated by the gHBF algorithms for the initial value of
the control, variable u0i

= 10. In the algorithms that have a constant parameter
γ (HBF, HBF1, HBF2, HBF3 and HBF4) it was chosen as γ = 1. In the
algorithms that have a parameter ǫ (HBF1, HBF3, HBF5 and HBF6), it was
chosen as ǫ = 0.1. The other parameters were chosen by hand tuning in such a
way to achieve the fastest convergence to the global minimum. These parameters
are reported in Table 6. Note that the trajectories generated by HBF4 and HBF5
converge to local minima. Another once, it is possible that with a different value
of the parameter γ, the trajectory generated by HBF4 converges to the global
minimum, but this possibility was not tested. The trajectories generated by
HBF1, HBF2, HBF3 and HBF6 converge to the global minimum faster than
the one generated by HBF.

Figure 24 shows the value of the function and the error norms versus time
for the trajectories generated by the CG algorithms for the initial value of the
control variable u0i

= 10. In the algorithms that have a constant parameter β

41



0 1 2 3 4 5 6

2

4

6

8

10

12

14

16

18

20

Value of the Ackley function vs. time. gHBF algorithms with u
0i

=10

t [s]

φ(
x)

HBF
HBF1
HBF2
HBF3
HBF4
HBF6
HBF5

gHBF γ=1

0 1 2 3 4 5 6
0

5

10

15

Error norm of the gHBF algorithms with u
0i

=10. Ackley function

t [s]

||x
||

HBF
HBF1
HBF2
HBF3
HBF4
HBF6
HBF5

gHBF γ=1

Figure 23: Value of the Ackley function and error norms vs. time for the
trajectories generated by the gHBF algorithms with γ = 1. Initial point x0i

=
−10, initial value of the control variable u0i

= 10 for all i ∈ {1, · · · , 10}.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

t [s]

φ(
x)

Value of the Ackley function vs. time. CG algorithms with u
0i

=10

CG1
CG2
CG5

CG β=1

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

t [s]

||x
||

Error norm of the CG algorithms with u
0i

=10. Ackley function

CG1
CG2
CG5

CG β=1

Figure 24: Value of the Ackley function and error norms vs. time for the
trajectories generated by the CG algorithms with β = 1. Initial point x0i

= −10,
initial value of the control variable u0i

= 10 for all i ∈ {1, · · · , 10}.

(CG1, CG2, CG3 and CG4), it was chosen as β = 1 for comparative purposes
with respect to the trajectories generated by the gHBF algorithms with the
same value of the parameter γ, which are showed in figure 23. In the algorithms
that have a parameter ǫ (CG1, CG3 and CG5), it was chosen as ǫ = 0.1.
The other parameters were chosen to try the fastest convergence to the global
minimum and they are reported in Table 6. Note that, with this value of β, only
trajectories generated by CG1, CG2 and CG5 (which does not have a constant
β) achieve convergence to the global minimum. Of course, it is possible that
with another value of the parameter β, trajectories generated by CG3 and CG4
may converge, but this possibility was not tested. However, such as happens
with the experiments reported in the former subsections, the convergence of the
trajectories generated by the CG algorithms is faster than the convergence of
their gHBF, MI and DIN competitors.

Figure 25 shows the value of the Ackley function versus time and the error
norms of the trajectories versus time for the trajectories generated by the algo-
rithms MI1, MI2, MI3, MI4, MI5 and DIN for the initial value of the control
variable u0i

= 20. The parameters were chosen by hand tuning in such a way

42



0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

Value of the Ackley function vs. time. u
0i

=20

t [s]

φ(
x)

MI1
DIN

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

t [s]

||x
||

Error norm of the algorithms. Ackley function. u
0i

=20

MI1
DIN

Figure 25: Value of the Ackley function and error norms vs. time for the
trajectories generated by the algorithms MI1, MI2, MI3, MI4, MI5 and DIN.
Initial point x0i

= −10, initial value of the control variable u0i
= 20 for all

i ∈ {1, · · · , 10}.

to achieve convergence to the global minimum, in the cases where it was possi-
ble, and to achieve the fastest convergence. These parameters are reported in
Table 6. Note that only the trajectories generated by MI1 and DIN converge to
the global minimum. It was not possible to find parameters by hand tuning to
achieve convergence of the trajectories generated by the other algorithms.

Figure 26 shows the value of the Ackley function and the error norms versus
time for the trajectories generated by the gHBF algorithms for the initial value of
the control, variable u0i

= 20. In the algorithms that have a constant parameter
γ (HBF, HBF1, HBF2, HBF3 and HBF4) it was chosen as γ = 2. In the
algorithms that have a parameter ǫ (HBF1, HBF3, HBF5 and HBF6), it was
chosen as ǫ = 0.1. The other parameters were chosen by hand tuning in such a
way to achieve the fastest convergence to the global minimum. These parameters
are reported in Table 6. It was not possible to find parameters by hand tuning
to achieve convergence to the global minimum for the algorithms HBF4 and
HBF5. Another once, it is possible that with a different value of the parameter
γ, the trajectory generated by HBF4 converges to the global minimum, but
this possibility was not tested. All the trajectories that converge to the global
minimum do it faster than the trajectory generated by the HBF algorithm.

Figure 27 shows the value of the function and the error norms versus time
for the trajectories generated by the CG algorithms for the initial value of the
control variable u0i

= 20. In the algorithms that have a constant parameter β
(CG1, CG2, CG3 and CG4), it was chosen as β = 2 for comparative purposes
with respect to the trajectories generated by the gHBF algorithms with the
same value of the parameter γ, which are showed in figure 26. In the algorithms
that have a parameter ǫ (CG1, CG3 and CG5), it was chosen as ǫ = 0.1. The
other parameters were chosen to try the fastest convergence to the global min-
imum and they are reported in Table 6. Note that all the trajectories converge
to the global minimum and very much faster than their gHBF, MI and DIN
competitors

Table 6 reports the parameters used by the algorithms with the Ackley
function.

43



0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

t [s]

φ(
x)

Value of the Ackley function vs. time. gHBF algorithms with u
0i

=20

HBF
HBF1
HBF2
HBF3
HBF6

gHBF  γ=2

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

10

t [s]
||x

||

Error norm of the gHBF algorithms with u
0i

=20. Ackley function

HBF
HBF1
HBF2
HBF3
HBF6

gHBF  γ=2

Figure 26: Value of the Ackley function and error norms vs. time for the
trajectories generated by the gHBF algorithms with γ = 2. Initial point x0i

=
−10, initial value of the control variable u0i

= 20 for all i ∈ {1, · · · , 10}.

0 0.5 1 1.5 2
0

5

10

15

20

25

t [s]

φ(
x)

Value of the Ackley function vs. time. CG algorithms with u
0i

=20

CG1
CG2
CG3
CG4
CG5

CG β=2

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

t [s]

||x
||

Error norm of the CG algorithms with u
0i

=20. Ackley function

CG1
CG2
CG3
CG4
CG5

CG β=2

Figure 27: Value of the Ackley function and error norms vs. time for the
trajectories generated by the CG algorithms with β = 2. Initial point x0i

= −10,
initial value of the control variable u0i

= 20 for all i ∈ {1, · · · , 10}.

44



Table 6: Parameters used by the algorithms in the experiments reported in
section 4.4 with the Ackley function, where - means that the trajectory does
not converge to a minimum in 10 s.

Ackley

u0i = 10 ∀i ∈ {1, · · · , 10} u0i = 20 ∀i ∈ {1, · · · , 10}

MI1 κ = 5.2 κ = 20.4

MI2 κ = 18 -

MI3 - -

MI4 - -

MI5 γ = 0.4, a = 0.5, b = 1 -

DIN a = 1, b = 0.3 a = 2, b = 0.4

HBF γ = 1 γ = 2

HBF1

γ = 1, ǫ = 0.1

µ =











1 − γ u
T

u

∇T φu

+ 11 ∇T φu > ǫ

2 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

γ = 2, ǫ = 0.1

µ =











1 − γ u
T
u

∇T φu

+ 30 ∇T φu > ǫ

2 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

HBF2 γ = 1, κ = 0.3 γ = 2, κ = 0.6

HBF3 γ = 1, κ = 1.5, ǫ = 0.1 γ = 2, κ = 0.5, ǫ = 0.1

HBF4 γ = 1, κ = 0.2 -

HBF5 a = 120, b = 230, ǫ = 0.1 a = 607, b = 986, ǫ = 0.1

HBF6
ǫ = 0.1

µ1 = 10, µ2 = 0.3
a = 1

ǫ = 0.1
µ1 = 3.5, µ2 = 0.9

a = 2

CG1

β = 1, ǫ = 0.1

α =











1 + β u
T
u

∇T φu

− 5 ∇T φu > ǫ

1 + β u
T
u

∇T φu

+ 28 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

β = 2, ǫ = 0.1

α =











1 + β u
T

u

∇T φu

− 12 ∇T φu > ǫ

1 + β u
T

u

∇T φu

+ 5 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

CG2 β = 1, κ = 8 β = 2, κ = 3.2

CG3 - β = 2, κ = 11.6

CG4 - β = 2, κ = 0.6

CG5 ǫ = 0.1, a = 2.5, b = 285 ǫ = 0.1, a = 9.5, b = 3000

45



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Value of the Griewank function vs. time.u
0i

=10

t [s]

φ(
x)

mi1
DIN

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

Error norm of the algorithms. Griewank function. u
0i

=10

t [s]

||x
||

mi1
DIN

Figure 28: Value of the Griewank function and error norms vs. time for the
trajectories generated by the algorithms MI1, MI2, MI3, MI4, MI5 and DIN.
Initial point x0i

= −20, initial value of the control variable u0i
= 20 for all

i ∈ {1, · · · , 10}.

4.5 Simulations with the Griewank function

The Griewank function can be expressed as:

φ(x) =

N
∑

i=1

x2
i

4000
−

N
∏

i=1

cos

(

xi√
i

)

+ 1 : R
N → R (60)

where N is the number of variables which was chosen as N = 10 for the nume-
rical experiments reported here.

The Griewank function has several local minima and a unique global mini-
mum at x∗ = 0. The value of the function at the global minimum is φ(x∗) = 0.
In all the experiments reported here, the initial point was chosen as x0i

= −20
and the initial value of the control variable as u0i

= 20 and u0i
= 30, for all

i ∈ {1, · · · , N}.
Figure 28 shows the value of the Griewank function versus time and the

error norms of the trajectories versus time for the trajectories generated by the
algorithms MI1, MI2, MI3, MI4, MI5 and DIN for the initial value of the control
variable u0i

= 20. The parameters of the algorithms were chosen by hand tuning
in such a way to achieve convergence to the global minimum, in the cases where
it was possible, and to achieve the fastest convergence. These parameters are
reported in Table 7. Note that, such as happened with the Ackley function
(figure 22), only MI1 and DIN converge to the global minimum, and in this case
it was not possible to find parameters by hand tuning to achieve convergence of
the trajectories generated by MI2, MI3, MI4 and MI5.

Figure 29 shows the value of the function and the error norms versus time
for the trajectories generated by the gHBF algorithms for the initial value of
the control variable u0i

= 20. In the algorithms that have a constant parameter
γ (HBF, HBF1, HBF2, HBF3 and HBF4) it was chosen as γ = 1. In all
the algorithms that have a parameter ǫ (HBF1, HBF3, HBF5 and HBF6), it
was chosen as ǫ = 0.1. The other parameters were chosen by hand tuning in
such a way to achieve the fastest convergence to the global minimum. These
parameters are reported in Table 7. All the trajectories converge to the global
minimum, but approximately at the same time that the one generated by the

46



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Value of the Griewank function vs. time. gHBF algorithms with u

0i
=20

t [s]

φ(
x)

gHBF γ=1

HBF
HBF1
HBF2
HBF4
HBF6
HBF3
HBF5

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20
Error norm of the gHBF algorithms with u

0i
=20. Griewank function

t [s]

||x
||

HBF
HBF1
HBF2
HBF4
HBF6
HBF3
HBF5

gHBF γ=1

Figure 29: Value of the Griewank function and error norms vs. time for the
trajectories generated by the gHBF algorithms with γ = 1. Initial point x0i

=
−20, initial value of the control variable u0i

= 20 for all i ∈ {1, · · · , 10}.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Value of the Griewank function vs. time. CG algorithms with u
0i

=20

t [s]

φ(
x)

CG1
CG2
CG4
CG3
CG5

CG
β=1

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Error norm of the CG algorithms with u
0i

=20. Griewank function

t [s]

||x
||

CG1
CG2
CG4
CG3
CG5

CG
β=1

Figure 30: Value of the Griewank function and error norms vs. time for the
trajectories generated by the CG algorithms with β = 1. Initial point x0i

= −20,
initial value of the control variable u0i

= 20 for all i ∈ {1, · · · , 10}.

HBF algorithm.
Figure 30 shows the value of the function and the error norms versus time

for the trajectories generated by the CG algorithms for the initial value of the
control variable u0i

= 20. In the algorithms that have a constant parameter β
(CG1, CG2, CG3 and CG4), it was chosen as β = 1 to compare with the trajec-
tories generated by the gHBF algorithms, with the same value of the parameter
γ, and showed in figure 29. In all the algorithms that have a parameter ǫ (CG1,
CG3 and CG5), it was chosen as ǫ = 0.1. The other parameters were chosen
to try the fastest convergence and they are reported in Table 7. Note that,
excepting the trajectory generated by the CG1 algorithm, the others converge
to the global minimum very much faster than their gHBF and DIN competitors.

Figure 31 shows the value of the Griewank function versus time and the
error norms of the trajectories versus time for the trajectories generated by the
algorithms MI1, MI2, MI3, MI4, MI5 and DIN for the initial value of the control
variable u0i

= 30. The parameters of the algorithms were chosen by hand tuning
in such a way to achieve convergence to the global minimum, in the cases where
it was possible, and to achieve the fastest convergence. These parameters are

47



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t [s]

φ(
x)

Value of the Griewank function vs. time.u
0i

=30

MI1
DIN

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

t [s]

||x
||

Error norm of the algorithms. Griewank function. u
0i

=30

MI1
DIN

Figure 31: Value of the Griewank function and error norms vs. time for the
trajectories generated by the algorithms MI1, MI2, MI3, MI4, MI5 and DIN.
Initial point x0i

= −20, initial value of the control variable u0i
= 30 for all

i ∈ {1, · · · , 10}.

2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t [s]

φ(
x)

 

 

Value of the Griewank function vs. time.gHBF algorithms with u
0i

=30

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF γ=1.5

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t [s]

||x
||

Value of the Griewank function vs. time. gHBF algorithms with u
0i

=30

HBF
HBF1
HBF2
HBF3
HBF4
HBF6

gHBF γ=1.5

Figure 32: Value of the Griewank function and error norms vs. time for the
trajectories generated by the gHBF algorithms with γ = 1.5. Initial point
x0i

= −20, initial value of the control variable u0i
= 30 for all i ∈ {1, · · · , 10}.

reported in Table 7. Note that, such as happened with the Ackley function
(figure 22) and in the former case (figure 28), only MI1 and DIN converge to
the global minimum, and in this case it was not possible to find parameters by
hand tuning to achieve convergence of the trajectories generated by MI2, MI3,
MI4 and MI5.

Figure 32 shows the value of the function and the error norms versus time
for the trajectories generated by the gHBF algorithms for the initial value of
the control variable u0i

= 30. In the algorithms that have a constant parameter
γ (HBF, HBF1, HBF2, HBF3 and HBF4) it was chosen as γ = 1.5. In all
the algorithms that have a parameter ǫ (HBF1, HBF3, HBF5 and HBF6), it
was chosen as ǫ = 0.1. The other parameters were chosen by hand tuning in
such a way to achieve the fastest convergence to the global minimum. These
parameters are reported in Table 7. All the trajectories converge to the global
minimum, but approximately at the same time that the one generated by the
HBF algorithm.

Figure 33 shows the value of the function and the error norms versus time

48



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t [s]

φ(
x)

Value of the Griewank function vs. time. CG algorithms with u
0i

=30

CG1
CG2
CG3
CG4
CG5

CG β=1.5

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

t [s]

||x
||

Value of the Griewank function vs. time. CG algorithms with u
0i

=30

CG1
CG2
CG3
CG4
CG5

CG β=1.5

Figure 33: Value of the Griewank function and error norms vs. time for the
trajectories generated by the CG algorithms with β = 1.5. Initial point x0i

=
−20, initial value of the control variable u0i

= 30 for all i ∈ {1, · · · , 10}.

for the trajectories generated by the CG algorithms for the initial value of the
control variable u0i

= 30. In the algorithms that have a constant parameter
β (CG1, CG2, CG3 and CG4), it was chosen as β = 1.5 to compare with the
trajectories generated by the gHBF algorithms, with the same value of the pa-
rameter γ, and showed in figure 32. In all the algorithms that have a parameter
ǫ (CG1, CG3 and CG5), it was chosen as ǫ = 0.1. The other parameters were
chosen to try the fastest convergence and they are reported in Table 7. Note
that the trajectory generated by the CG2 algorithm converges to the global
minimum very much faster than their gHBF and DIN competitors.

Table 7 reports the parameters used by the algorithms with the Griewank
function.

4.6 Comparative analysis of the performances of the al-

gorithms

To make a comparative analysis of the performance of the algorithms, two times
of convergence are presented in Table 8. These two times refer to when the tra-
jectories generated by the algorithms get into and remain inside B(x∗, 0.8) and
B(x∗, 0.1); that is, since x∗ = 0 in all the functions, the times tc1 and tc2 such
that ‖x(t)‖ < 0.8 for all t > tc1 and ‖x(t)‖ < 0.1 for all t > tc2 , respectively.

The behavior of the trajectories generated by the algorithms presented here,
tested with this small suite of benchmark functions, and showed in figures 4 to
26, as well as the times of convergence reported in Table 8, lead us to some
conclusions.

The MI algorithms have the simplest structure, in general with only one
parameter to adjust. However, only MI1 presents convergence in all the cases
tested, and, excepting with the inverted camelback function, convergence is fast
and with a good transient.

The trajectories generated by the DIN algorithm converge in almost all the
cases tested, and, excepting for the Rastrigin function, a little faster than those

49



Table 7: Parameters used by the algorithms in the experiments reported in
section 4.5 with the Griewank function, where - means that the trajectory does
not converge to a minimum in 10 s.

Griewank

u0i = 20 ∀i ∈ {1, · · · , 10} u0i = 30 ∀i ∈ {1, · · · , 10}

MI1 κ = 10.1 κ = 22.5

MI2 - -

MI3 - -

MI4 - -

MI5 - -

DIN a = 1, b = 30 a = 1.49, b = 57

HBF γ = 1 γ = 1.5

HBF1

γ = 1, ǫ = 0.1

µ =







100 ∇T φu > ǫ

30 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

γ = 1.5, ǫ = 0.1

µ =







2.2 ∇T φu > ǫ

0.1 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

HBF2 γ = 1, κ = 0.2 γ = 1.5, κ = 0.6

HBF3 γ = 1, κ = 0.2, ǫ = 0.1 γ = 1.5, κ = 0.4, ǫ = 0.1

HBF4 γ = 1, κ = 0.2 γ = 1.5, κ = 0.9

HBF5 a = 380, b = 980, ǫ = 0.1 -

HBF6
ǫ = 0.1

µ1 = 10, µ2 = 0.3
a = 1

ǫ = 0.1
µ1 = 1, µ2 = 0.9

a = 1.5

CG1

β = 1, ǫ = 0.1

α =











1 + β u
T
u

∇T φu

− 150 ∇T φu > ǫ

1 + β u
T
u

∇T φu

+ 260 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

β = 1.5, ǫ = 0.1

α =







9 ∇T φu > ǫ

0.9 ∇T φu < −ǫ

1 |∇T φu| ≤ ǫ

CG2 β = 1, κ = 7 β = 1.5, κ = 3

CG3 β = 1, κ = 3.5, ǫ = 0.1 β = 1.5, κ = 15.5, ǫ = 0.1

CG4 β = 1, κ = 40 β = 1.5, κ = 49.2

CG5 ǫ = 0.1, a = 2, b = 720 ǫ = 0.1, a = 8, b = 950

Table 8: Times of convergence of the trajectories for the experiments reported
here, expressed in s. Convergence occurs when ‖x(tc) − x∗‖ < δ, and remains
for all t > tc, where the first time corresponds to δ = 0.8 and the second
time corresponds to δ = 0.1. x01 = [2 1]T , x02 = [−1.5 − 1.5]T , x03 =
[1.7475 − 0.8737]T and - means that the trajectory does not achieve the goal in
10 s. The fastest times in each case are boldfaced.
Scalar Camelback Rastrigin Ackley Griewank

x0 = x01
x0 = x02

x0 = x03
γ = β = 5 γ = β = 10 u0i

= 10 u0i
= 20 u0i

= 20 u0i
= 30

MI1 1.61 1.87 5.76 9.98 2.64 3.5 3.26 - 0.18 0.31 1.72 1.95 0.85 0.96 1.81 - 1.17 -

MI2 1.26 1.47 - - 2.01 5.31 6.6 9.88 - - - - - - - - - -

MI3 4.68 9.83 - - - - - - 4 - - - - - - - - -

MI4 - - - - 2.69 7.59 - - - - - - - - - - - -

MI5 0.24 1.3 - - - - - - - - - - - - - - - -

DIN 2.17 2.45 - - 1.01 3.91 0.76 1.55 4.36 5.84 2.93 4.05 1.82 2.66 3.22 4.29 2.02 2.46

HBF 3.0 9.83 4.71 6.64 1.04 3.63 0.61 1.61 0.2 1.22 0.77 1.18 3.9 7.49 1.64 3.5 4.14 - 2.82 8.46

HBF1 2.36 2.6 2.88 4.25 1.05 2.46 0.86 2.27 0.21 0.7 0.23 0.41 1.98 2.85 1.28 1.65 9.5 - 2.86 3.97

HBF2 1.74 2.39 - - 1.67 5.52 0.62 1.7 0.22 0.97 0.92 1.46 3.31 5.25 1.95 2.56 4.17 - 2.86 3.99

HBF3 1.81 4.63 4.86 - 1.13 6.37 4.56 8.28 0.2 0.84 0.79 1.22 2.97 8.75 1.65 2.84 4.20 - 2.85 4.02

HBF4 2.29 5.05 - - 1.67 3.70 0.64 1.72 - - - - - - - - 4.16 - 2.89 4

HBF5 1.33 1.47 7.72 - 0.77 7.89 0.25 2.34 - - - - - - - - - -

HBF6 3.0 4.65 2.22 4.53 0.86 3.25 0.65 1.56 0.29 0.83 3.9 6.84 1.64 3.35 4.13 - 2.82 9.1

CG1 0.1 0.37 0.08 2.05 0.04 1.7 0.6 0.61 0.23 0.53 0.05 0.2 1.89 2.53 1.08 2.22 - - 2.82 5.99

CG2 0.63 1.05 1.74 2.52 0.05 0.64 0.31 1.12 0.18 0.49 0.04 0.25 1.1 2.97 0.49 1.46 1.55 3.72 0.93 2.08

CG3 0.55 0.71 0.68 2.71 0.82 2.59 0.3 2.1 0.21 0.81 0.74 1.15 - - 1.51 1.75 7.4 - 3.09 7.39

CG4 3.83 5.39 0.03 0.76 0.11 0.19 1.33 2.04 0.28 0.36 0.19 0.2 - - 1.11 1.49 2.72 - 3.56 6.77

CG5 1.39 1.73 0.10 0.20 0.70 2.36 0.21 0.27 1.1 1.24 2.69 2.82 0.73 0.77 3.02 - 4.67 4.7

50



generated by the traditional HBF algorithm. With the inverted camelback
function from x0 = [2 1]T , the trajectory converges to the closer local minimum
excepting that a very small value of the parameter b were used, and in this case
the algorithm becomes similar to the HBF, zeroing the spatial damping term.

Among the gHBF algorithms, the HBF1, HBF2, HBF3 and HBF6 presented
good performances, converging in almost all the cases tested. However, in HBF2
and HBF3, in some cases it was necessary to choose very small values of the
parameter κ, so the parameter µ approximates to one and the algorithms be-
comes similar to the HBF. The HBF1 and HBF6 present the lowest times of
convergence, lower than the times presented by the HBF algorithm.

All the CG algorithms presented good performances and fast times of con-
vergence. In the majority of the cases, they are very much faster than the
trajectories generated by the gHBF algorithms with the same value of the fric-
tion parameter (γ in the gHBF, and β in the CG). The best performances were
presented by CG2 and CG5.

Finally, we note that with the Ackley function, from the initial point and
with the initial values of the control variable chosen, and with the values of
the parameters used, several algorithms did not achieve convergence, with both
of the used criterions. Once again, we emphasize that it is possible that from
another initial point, with another initial value of the control variable, or a
different value of the friction parameter (γ in gHBF and β in CG) the goal
may be achieved. This possibility was not tested. With the Griewank function,
with the initial value of the control variable u0i

= 20, we note that several
trajectories get into B(x∗, 0.8), but only two of them (DIN and CG2) get into
B(x∗, 0.1) until 10 s, the final time used in the experiments. With the initial
value of the control variable u0i

= 30, it only happens with the MI1 algorithm.

4.7 Analysis of the discontinuities of the trajectories

The algorithms deduced here are characterized by continuous time ODEs. These
algorithms generate continuous trajectories from an initial point x0 to, if con-
vergence is achieved, the global minimum x∗. It is true even in the cases where
the update law of the state variable is discontinuous. For example, the first
order ODE with a discontinuous update law:

ẋ = −sgn(x)

generates a continuous trajectory along the time from an initial point x0 given
by:

x(t) = x0 − sgn(x0)t

which converges to the equilibrium point x = 0. One notable feature presented
by ODEs with discontinuous right-hand side is that they can present convergence
in finite time; in this case, the convergence time is T = maxi |x0i

|.
The notable features, true for many vector ODEs with discontinuous right-

hand sides, are the finite time convergence and the fact that there is a continuous
solution from the initial condition to the equilibrium point (see [32, 31] for
further details).

However, observing the plots presented in the experiments reported here,
we note that there are several discontinuous trajectories. This phenomenon is
due to the discretization of the algorithms made with the forward Euler method

51



−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Valeu of the scalar function vs. trajectories (variable x)

x

φ(
x) scalar 

function

CG1
MI5

Figure 34: Value of the scalar function vs. trajectory x for the trajectories
generated by the CG1 and MI5 algorithms. Initial point x0 = −20, initial value
of the control variable u0 = 20.

with a constant step size h = 0.01 s. This means that the state variables are
calculated as:

xk+1 = xk + hẋ

where k is a natural number, such that t = k h.
We also note that, in the cases where the update law of the state variable

ẋ = u, there are no discontinuous trajectories, independently of the update law
of the control variable u̇, whereas in the cases where the update law ẋ 6= u, for
example, in the CGs cases where ẋ = α(x,u)u, discontinuous trajectories can
be produced (if α(x,u) is large enough). This means that, from the discretized
state xk, the next state xk+1 is calculated as xk+1 = xk + hα(xk,uk)uk and,
if the product hα(xk,uk)uk is large enough, then this large jump occurs in the
discrete state.

The discontinuities in the trajectories are not necessarily an undesirable
feature. We note that this is exactly the reason because the convergence of
some trajectories generated by the CG method is very much faster than those
generated by its competitors.

In order to get a better feel for the interplay between the choice of the step
size h and the switching law α(·, ·), the scalar function (56) will be used. Figure
34 shows the value of the objective function vs. the trajectories generated by the
two fastest algorithms, CG1 and MI5 with a step size h = 0.01 s and the same
values of the parameters and initial conditions than those used in the former
simulations. These trajectories converge to a ball B(x∗, 0.8) in 0.1 s and 0.24 s,
respectively (see Table 8).

Note that the discontinuities in the trajectories are exactly what seem to
speed up the convergence, reaching a point close to x∗ very fast (actually, 0.03 s,
before initiating a continuous trajectory to the minimum point).

Figure 35 shows the trajectories generated by the CG1 algorithm from the
initial point x0 = −20, with initial value of the control variable u0 = 10, and
the parameters β = 10, ǫ = 0.1 and α = 34.1 if ∇Tφu > ǫ and α = 1 if
∇Tφu ≤ ǫ, but discretized with step sizes h = 0.1, 0.05, and 0.01, respectively.
The figure shows clearly that for a fixed value of the parameter α(xk,uk), the
greater the value of the step size h, the greater the initial jump in the trajectory.
For example, from the initial conditions, with α(x0,u0), the step size h = 0.1

52



−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Trajectories generated by  CG1 with different step sizes

x

φ(
x)

h=0.01
h=0.05 
h=0.1 

u
0
=10

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

φ(
x)

Value of the scalar function vs. number of iteration k for the CG1 algorithm 
with different step sizes

h=0.01
h=0.05 
h=0.1 

u
0
=10

Figure 35: Trajectories generated by CG1 with the scalar function and value of
the function vs. number of iteration k using step sizes h = 0.1, 0.05 and 0.01,
with x0 = −20 and u0 = 10.

−2
0

2 −1.5

−1

−0.5

0

0.5

1

1.5

0

1

2

3

4

x
2

CG trajectories in the state space. x
0
=[2 1]

x
1

φ(
x)

CG1
CG2
CG4
CG3
CG5

CG1
CG2
CG4
CG3
CG5

Figure 36: Trajectories generated by the CG algorithms for the camelback func-
tion in 3D, where the gray surface represents the value of the function. Initial
point x0 = [2 1]T , initial value of the control variable u0 = [0 0]T .

produces the greater jump. Thus if α, β, and u0 are adequately chosen, so that
the large jump takes the state close to the global minimum, which also means
that convergence is the fastest.

Figure 36 shows the trajectories generated by the CG algorithms with the
inverted camelback function as objective function from the initial point x0 =
[2 1]T in a three-dimensional plot. The figure to the right is a zoom of the one on
the left, in order to visualize the discontinuities in some trajectories (specially,
in those generated by CG1, CG3 and CG4). The figure shows the gray surface
which represents the value of the objective function and the colored trajectories.

Note that the trajectory which seems to present more discontinuities (CG4)
is that with fastest time of convergence (0.03 s to get into a ball B(x∗, 0.8)).

Figure 37 shows the trajectories generated by the CG algorithms with the
inverted camelback function as objective function from the initial point x0 =
[−1.5 −1.5]T in a three-dimensional plot. The figure to the left has the opposite
view point of the right one.

Note that, also here, the trajectory which seems to present more disconti-
nuities (CG4) is one of the fastest (0.11 s to get into a ball B(x∗, 0.8)).

53



−3
−2

−1
0

1
2

3
−1.5

−1

−0.5

0

0.5

1

1.5

0

2

4

x
2

CG trajectories in the state space. x
0
=[−1.5 −1.5]

x
1

φ(
x)

CG1
CG2
CG4
CG3
CG5

−3−2−10123

−1.5

−1

−0.5

0

0.5

1

1.5

0

2

4

x
2

x
1

CG trajectories in the state space. x
0
=[−1.5 −1.5]

φ(
x)

CG1
CG2
CG4
CG3
CG5

Figure 37: Trajectories generated by the CG algorithms for the camelback func-
tion in 3D, where the gray surface represents the value of the function. Initial
point x0 = [−1.5 − 1.5]T , initial value of the control variable u0 = [1 1]T .

The discontinuities presented by some of the trajectories generated by the
CG algorithms seems to be the main reason for their fast convergence to the
minimum point.

4.8 Application with an unknown objective function

When the goal is to find the minimum of an unknown scalar objective function
φ(x) : R

n → R, a strategy can be to choose several initial points x0 with several
initial values of the control variable u0. From every initial point and with every
initial value of the control variable, one algorithm is used with different values
of the parameters, computing at each execution the minimal point founded. Of
course, it is not guaranteed that the minimum founded is the global minimum
of the function, but as greater the number of initial points and the number of
the initial values of the control variable, the greater the possibility of finding
the global minimum of the objective function.

As illustrative examples, the CG2 algorithm is chosen, because it has only
two parameters to adjust and it presented an excellent performance with all
the functions used in the former subsections, and for comparison the traditional
HBF algorithm. The objective function chosen is the Rastrigin function (58)
with 10 variables; this function presents a global minimum at x∗ = 0 and the
value of the function at the global minimum is φ(x∗) = −N = −10.

Four initial points and four initial values of the control variable were used
in this example. They are:

x01 = u01 = [10 10 10 10 10 − 10 − 10 − 10 − 10 − 10]T

x02 = u02 = [−10 − 10 − 10 − 10 − 10 10 10 10 10 10]T

x03 = u03 = [10 10 10 10 10 10 10 10 10 10]T

x04 = u04 = [−10 − 10 − 10 − 10 − 10 − 10 − 10 − 10 − 10 − 10]T

The parameter γ in the HBF algorithm was adjusted by hand tuning in
such a way to achieve the fastest convergence to the global minimum (which is a
priori known in this example). In the CG2 algorithm, 225 different values of the
parameter κ and 225 different values of the parameter β, both of them ranging
from 0.1 to 1000, were tested, and the fastest convergence to the minimum value
reached by the trajectories was recorded.

54



Table 9: Parameters and time of convergence, expressed in s, of the algorithms
HBF and CG2 from each initial point and with each initial value of the control
variable. Convergence occurs when ‖x(tc)−x∗‖ < δ, and remains for all t > tc,
where t1 corresponds to δ = 0.8 and t2 corresponds to δ = 0.1.

HBF CG2

param. t1 t2 param. t1 t2
x01 u01 γ = 2.3 3.07 5.13 β = 82.5 κ = 115 0.03 0.03
x01 u02 γ = 2.3 1.92 3.99 β = 97.5 κ = 95 0.02 0.03
x01 u03 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x01 u04 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x02 u01 γ = 2.3 1.92 3.99 β = 97.5 κ = 95 0.02 0.03
x02 u02 γ = 2.3 3.07 5.13 β = 82.5 κ = 115 0.03 0.03
x02 u03 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x02 u04 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x03 u01 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x03 u02 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x03 u03 γ = 2.3 3.07 5.13 β = 82.5 κ = 115 0.03 0.03
x03 u04 γ = 2.3 1.92 3.99 β = 97.5 κ = 95 0.02 0.03
x04 u01 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x04 u02 γ = 2.2 2.75 4.85 β = 29 κ = 205 0.24 0.32
x04 u03 γ = 2.3 1.92 3.99 β = 97.5 κ = 95 0.02 0.03
x04 u04 γ = 2.3 3.07 5.13 β = 82.5 κ = 115 0.03 0.03

From every initial point and with every initial value of the control variable,
both of the algorithms achieve the global minimum. The results are reported
in Table 9. Note that, once again, the times of convergence of the trajecto-
ries generated by the CG2 algorithms are very much lower than the times of
convergence of the trajectories generated by the traditional HBF algorithm.

5 Conclusions

The second order continuous time algorithms proposed in this paper, adequate
for implementation as neural networks, were able to find minima of nonconvex
scalar functions in a satisfactory way. The algorithms were tested with a small
suite of benchmark functions. They were the shifted sinc function, inverted
camelback, Rastrigin, Ackley and Griewank, which are all multimodal and have
a unique finite global minimum.

The interpretation of the algorithms as closed loop control system has the
advantage of to offer powerful tools for the design of new algorithms as well as
for the analysis of the behavior of the existing ones. One tool, systematically
used in this paper, is the control Liapunov function method. The algorithms
deduced here are only some of the simplest examples which could be deduced
using this method.

The authors feel that second-order neural networks, systematically designed
using the powerful CLF technique, are promising, although more extensive nu-
merical testing needs to be carried out, including the possibility of random ini-
tialization of parameters, instead of hand tuning, and combination with other

55



randomization methods to generate new starting points, such as the differential
evolution (DE) method. Some preliminary progress in this area, using a com-
bination of the Snyman-Fatti heavy ball method and a DE method has been
made ([33]) and these ideas could be applied to propose a hybrid of DE and CG
nets.

Comparing the performances of the different algorithms, we note that the
goal of bypassing local minima is achieved only by some of the new algorithms
and only after a careful adjustment of the parameters. However, this possibility
of adjusting parameters does represent an advantage compared with algorithms
based on first order ODEs, which will always stop at local minima, no matter
what parameters are chosen.

This is a well known drawback of deterministic schemes for global mini-
mization, but two observations are important here. First, it should be noted
that this possibility of adjusting parameters is an advantage compared with
neural nets based exclusively on gradient information (first-order ODEs in ge-
neral), the trajectories of which will usually converge to local minima. Second,
the numerical experiments carried out, although on a small set of benchmark
functions, indicate that a few random initializations are usually sufficient to
find suitable parameter values, so that a hybrid net (random initializations, fol-
lowed by deterministic trajectory following) seems to have good potential for
fast convergence to a global minimum, with fewer function evaluations and less
computational burden compared to heuristic probabilistic algorithms, such as
genetic algorithms.

Of the seventeen different nets tested (five MI, DIN, six gHBF and five
CG), only the CG net presented very good behavior on all of the benchmark
examples on which all the algorithms were tested, showing fast convergence and
good transients and accuracy.

The CG method, with the x-dynamics being directly affected by the dis-
continuous switching law in α does better than the gHBF methods, in which
the CLF designed discontinuous switching law directly affects the u-dynamics,
while the x-dynamics are affected only after integration (hence in a continuous
fashion).

In the light of the results obtained in this paper, the proposed CG net seem
to be consistently better than the heavy ball method and its variants, which have
received much attention in the literature. Further research on initialization of
the CG net so as to promote convergence to the global minimum with a high
probability needs to be carried out, and a theoretical analysis of the rate of
convergence still needs to be carried out.

We end with a quote from Bertsekas [34, p.75] and a reflection: Generally,
there is a tendency to think that difficult problems should be addressed with
sophisticated methods, such as Newton-like methods. This is often true, parti-
cularly for problems with nonsingular local minima that are poorly conditioned.
However, it is important to realize that often the reverse is true, namely that
for problems with “difficult” cost functions and singular local minima, it is best
to use simple methods such as (perhaps diagonally scaled) steepest descent with
simple stepsize rules such as a constant or diminishing stepsize. The reason is
that methods that use sophisticated descent directions and stepsize rules often
rely on assumptions that are likely to be violated in difficult problems. We also
note that for difficult problems, it may be helpful to supplement the steepest des-
cent method with features that allow it to deal better with multiple local minima

56



and peculiarities of the cost function. An often useful modification is the heavy
ball method ....

References

[1] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and
Signal Processing. Chichester: John Wiley, 1993.

[2] M. T. Chu, “Linear algebra algorithms as dynamical systems,” Acta Nu-
merica, pp. 1–86, 2008.

[3] A. Bhaya and E. Kaszkurewicz, Control perspectives on numerical algo-
rithms and matrix problems, ser. Advances in Control. Philadelphia:
SIAM, 2006.

[4] ——, “Steepest descent with momentum for quadratic functions is a version
of the conjugate gradient method,” Neural Networks, vol. 17, no. 1, pp. 65–
71, 2004.

[5] B. T. Polyak, “Some methods of speeding up the convergence of iterative
methods,” USSR Computational Mathematics and Mathematical Physics,
vol. 4, no. 5, pp. 1–17, 1964, Zh. Vychisl. Mat. Mat. Fiz., pp. 791-803
(Russian edition).

[6] ——, Introduction to optimization. New York: Optimization software,
1987.

[7] H. Attouch, X. Goudou, and P. Redont, “The heavy ball with friction
method. The continuous dynamical system,” Communications in contem-
porary math, vol. 2, pp. 1–34, 2000.

[8] A. Cabot, “Inertial gradient-like dynamical system controlled by a stabi-
lizing term,” Journal of Optimization Theory and Applications, vol. 120,
no. 2, pp. 275–303, 2004.

[9] A. Bhaya and E. Kaszkurewicz, “Iterative methods as dynamical systems
with feedback control,” in Proc. 42nd IEEE Conference on Decision and
Control, Maui, Hawaii, USA, December 2003, pp. 2374–2380.

[10] ——, “A control-theoretic approach to the design of zero finding numerical
methods,” IEEE Transactions on Automatic Control, vol. 52, no. 6, pp.
1014–1026, June 2007.

[11] F. Pazos, A. Bhaya, and E. Kaszkurewicz, “Unified control Liapunov func-
tion based design of neural networks that aim at global minimization of
nonconvex functions,” in Proc. of the International Joint Conference on
Neural Networks, Atlanta, U.S.A., 2009.

[12] A. Bhaya, F. Pazos, and E. Kaszkurewicz, “Comparative study of the CG
and HBF ODEs used in the global minimization of nonconvex functions,”
in Proceedings of the 19th. International Conference on Artificial Neural
Networks, Limassol, Cyprus, September 2009.

57



[13] F. Alvarez, H. Attouch, J. Bolte, and P. Redont, “A second-order gradient-
like dissipative dynamical system with Hessian-driven damping. Applica-
tion to optimization and mechanics,” J. Math. Pures Appl., vol. 81, pp.
747–779, 2002.

[14] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs,
New Jersey: Prentice Hall, 1991.

[15] J.-P. Chehab and M. Raydan, “Implicit and adaptive inverse precondi-
tioned gradient methods for nonlinear problems,” Applied Numerical Math-
ematics, vol. 55, no. 1, pp. 32–47, 2005.

[16] J. Snyman and L. Fatti, “A multi-start global minimization algorithm with
dynamic search trajectories,” Journal of Optimization Theory and Appli-
cations, vol. 54, pp. 121–141, 1987.

[17] J. A. Snyman and S. Kok, “A reassessment of the Snyman-Fatti dynamic
search trajectory method for unconstrained global optimization,” Journal
of Global Optimization, vol. 43, pp. 67–82, 2009, dOI: 10.1007/s10898-008-
9293-y.

[18] K. Shimizu, H. Sugata, and T. Hagino, “Global optimization via multi-
trajectory inertial system and chaos,” in 1st International Conference
on Control of Oscillations and Chaos, vol. 2, Aug 1997, pp. 262–266,
dOI:10.1109/COC.1997.631339.

[19] A. V. Levy and A. Montalvo, “The tunneling algorithm for the global mi-
nimization of functions,” SIAM Journal on Scientific and Statistical Com-
puting, vol. 6, pp. 15–29, 1985.

[20] P. V. Barhen, J. and D. Reister, “Trust: A deterministic algorithm for
global optimization,” Science, vol. 276, pp. 1094–1097, May 1997.

[21] J. Lee, “A novel three-phase trajectory informed search methodology for
global optimization,” Journal of Global Optimization, vol. 38, pp. 61–77,
2007, dOI: 10.1007/s10898-006-9083-3.

[22] Y. Shang, “Global search methods for solving nonlinear optimization
problems,” Ph.D. dissertation, University of Illinois, Urbana Champaign,
U.S.A., 1997.

[23] N. Ampazis and S. Perantonis, “Two highly-efficient second order algo-
rithms for training feedforward networks,” IEEE Transactions on Neural
Networks, vol. 13, no. 5, 2002.

[24] J. Egea, E. Vazquez, J. Banga, and R. Mart, “Improved scatter search for
the global optimization of computationally expensive dynamic models,”
Journal of Global Optimization, 2007, dOI: 10.1007/s10898-007-9172-y.

[25] S. Ray and P. S. V. Nataraj, “An efficient algorithm for range computation
of polynomials using the Bernstein form,” Journal of Global Optimization,
2008, dOI: 10.1007/s10898-008-9382-y.

58



[26] J. Olensek, A. Burmen, J. Puhan, and T. Tuma, “Desa: a new hybrid global
optmization method and its application to analog integrated circuit sizing,”
Journal of Global Optimization, 2008, dOI: 10.1007/s10898-008-9307-9.

[27] M. J. Hirsch, C. N. Meneses, P. M. Pardalos, and M. G. C. Resende, “Global
optimization by continuous grasp,” Optimization Letters, vol. 1, pp. 201–
212, 2007, dOI: 10.1007/s11590-006-0021-6.

[28] M. Schnurr, “A second-order pruning step for verified global optimization,”
Journal of Global Optimization, 2008, dOI: 10.1007/s10898-008-9331-9.

[29] C. A. Floudas and C. E. Gounaris, “A review of recent advances in global
optimization,” Journal of Global Optimization, 2008, dOI: 10.1007/s10898-
008-9332-8.

[30] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, pp. 145–151, 1999.

[31] J. Cortés, “Discontinuous dynamical systems. A tutorial on notions of solu-
tions, nonsmooth analysis, and stability.” IEEE Control systems magazine,
pp. 36–73, June 2008.

[32] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides.
Dordrecht: Kluwer Academic, 1988.

[33] E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, “Evolutionary ope-
rators in global optimization with dynamic search trajectories,” Numerical
Algorithms, vol. 34, pp. 393–403, 2003.

[34] D. P. Bertsekas, Nonlinear Programming, 2nd ed., ser. Optimization and
Computation series. Belmont, MA: Athena Scientific, 1999.

59


