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Abstract

It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation

method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball

with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained

using a control Liapunov function analysis of the system.
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1. Introduction

The backpropagation with momentum algorithm (BPM)

has been much analyzed in the neural network literature and

even compared with other methods, in particular, the

conjugate gradient (CG) method (Kamarthi & Pittner,

1999; Yu & Chen, 1997). However, although it has been

noticed in these two papers that BPM is actually a stationary

(or time-invariant) version of the well known CG algorithm,

this fact does not seem to have been enunciated explicitly

enough in order to have permeated the neural network

community, since papers continue to be written on the

analysis of BPM without mentioning or exploiting this

connection (Qian, 1999; Torii & Hagan, 2002). The purpose

of this note is to point out this fact as well as generalize the

results of both these papers to the time-varying or dynamic

case. In particular, for a quadratic error function, the choice

of learning and momentum parameters that has been referred

to as ‘optimally tuned’ is shown to be exactly equivalent to

using the CG algorithm.

For brevity, this note will focus on the contributions of

Qian (1999) and Torii and Hagan (2002) which are recent

and clearly written time-invariant analyses of the BPM

method, which has been extensively analyzed, both

theoretically and experimentally (see, for example, Hagi-

wara and Sato (1995), Kamarthi and Pittner (1999),

Phansalkar and Sastry (1994), Yu and Chen (1997), and

Yu, Chen, and Cheng (1995) and references therein).

In Torii and Hagan (2002), a detailed analysis of the

convergence of the BPM method is carried out for the case

where a quadratic error function is to be analyzed. In Qian

(1999), the BPM algorithm is shown to result from the

discretization of a continuous-time ordinary differential

equation that models the movement of Newtonian particles

through a viscous medium in a conservative force field.

These authors do not make connections between their

results and the CG algorithm or earlier results on continuous

optimization.

This paper points out that the BPM method presented in

Torii and Hagan (2002) for fixed momentum and steepest

descent parameters (or gains) is actually a special case of the

more general CG method, in which both these parameters

are chosen dynamically in feedback form. It can be shown,

in fact, that a control Liapunov function approach leads, in a

straightforward manner, to the CG choice of these

parameters (Bhaya & Kaszkurewicz, 2002). In respect of

Qian’s analogy between Newtonian particles and the BPM

method, it is pointed out that there are results on so called

continuous optimization, starting as far back as Polyak
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(1964), Tsypkin (1971), and, more recently, in Attouch,

Goudou, and Redont (2000) and Polyak (1987), where this

method is referred to as the ‘heavy ball with friction’ (HBF)

method. It turns out that, in fact, both Qian’s continuous

version of BPM and a continuous version of the CG method

can be regarded as the HBF method. However, we point out

that it is more fruitful to introduce a continuous version of

the CG method that is strictly analogous to the discrete CG

algorithm and to regard the learning rate and momentum

factor parameters as inputs to this system. When this is

done, the resulting continuous-time system is a pair of

coupled bilinear systems that permits a simple control

Liapunov function analysis, furnishing state-dependent (i.e.

feedback) choices of the learning rate and momentum factor

that provide global asymptotic stability.

Finally, the control Liapunov function analysis technique

used in this paper is very general and can be used to analyze

other proposals for tuning parameters in BPM algorithms.

2. Steepest descent plus momentum equals frozen
conjugate gradient

In order to fix notation, we describe the BPM problem.

Torii and Hagan (2002) studied the problem of determining

a set of network weights x that minimize a quadratic error

function

f ðxÞ ¼
1

2
kx;Axl2 kb; xlþ c ð1Þ

where A is a symmetric positive definite matrix. The

gradient 7f ðxÞ ¼ Ax 2 b V 2r is also called the residue

(in the context of solution of the linear system Ax ¼ b). In

this notation, the BPM algorithm can be written as

xkþ1 2 xk ¼ mkðxk 2 xk21Þ þ ð1 2 mkÞlkrk ð2Þ

Notice that this equation is the same as that studied by Torii

and Hagan (2002), with one important difference: the

learning rate l and the momentum factor m are both allowed

to be time-varying. Much of the existing analysis in the

neural network literature (Haykin, 1999; Phansalkar &

Sastry, 1994; Qian, 1999; Torii & Hagan 2002) is restricted

to the case of constant l and m: There is also a large

literature on the time-varying case, generally referred to as

dynamic or adaptive choice of the learning rate and

momentum factors (see Kamarthi and Pittner (1999) and

references therein), but, to the best of our knowledge, the

observations made in this paper are new.

We now present the CG method from a control

viewpoint, which is the inspiration for the results obtained

here. The CG method is conveniently viewed as an

acceleration of the steepest descent method, or, equiva-

lently, as an example of the standard feedback control

system with a proportional controller. The acceleration is

achieved by using a discrete version of a classical control

strategy for faster ‘closed-loop’ response (i.e. acceleration

of convergence to the equilibrium): this strategy is known as

derivative action in the control (Goodwin, Graebe, &

Salgado, 2001). The development of this approach is as

follows.

First consider the steepest descent method

xkþ1 ¼ xk þ akrk ð3Þ

Now suppose that a new method is to be derived from the

above method by adding a new term that is proportional to a

discrete derivative of the state vector xk: In other words, the

new increment Dxk U xkþ1 2 xk is a linear combination of

the steepest descent direction rk and the previous increment

or discrete derivative of the state xk 2 xk21: Putting in scalar

gains ak and gk; this can be expressed mathematically as

follows

xkþ1 ¼ xk þ ak½rk þ gkðxk 2 xk21Þ� ð4Þ

This can be rewritten as

xkþ1 ¼ xk þ akpk; ð5Þ

defining pk as follows

pk ¼ rk þ gkðxk 2 xk21Þ ¼ rk þ gkak21pk21

¼ rk þ bk21pk21 ð6Þ

where

bk21 U gkak21 ð7Þ

Combining these formulas leads to

xkþ1 ¼ xk þ akpk

rkþ1 ¼ rk 2 akApk

pkþ1 ¼ rkþ1 þ bkpk

ð8Þ

which are the standard CG formulas (Greenbaum, 1997).

From the point of view of control theory, one approach to

understand this algorithm is to think of the ‘parameters’ ak

and bk as scalar control inputs. The motivation for doing

this is the observation that the systems to be controlled then

belong to the class of systems known as bilinear in control

theory, since they are linear in the control input if the state is

held fixed, as well as in the state input, if the control input is

fixed. More precisely, taking rk and pk as the state variables,

the heart of the CG algorithm above is the following pair of

interconnected bilinear systems

rkþ1 ¼ rk 2 akApk ð9Þ

pkþ1 ¼ rkþ1 þ bkpk ð10Þ

The control objective is to choose the scalar controlsak;bk so

as to drive the state vectors rk and pk to zero. A natural idea is

to use feedback, i.e. to choose the controls ak and bk as

functions of the state vectors. This has been done in Bhaya

and Kaszkurewicz (2002), where it is shown that this

approach leads to exactly the same algorithm as the

conventional CG algorithm. Rather than repeat the analysis
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here, we will just point out the relation between the optimal

choice of the ‘controls’ ak; bk and the learning rate and

momentum factors. These choices are

ak ¼
krk;pkl
kApk;pkl

bk ¼ 2
kpk;Arkþ1l
kpk;Apkl

ð11Þ

Note that these equations are equivalent to the more

commonly used forms (Greenbaum, 1997):

ak ¼
krk; rkl
kpk;Apkl

bk ¼
krkþ1; rkþ1l
krk; rkl

ð12Þ

Comparing Eq. (2) with Eq. (4), the following equivalences

between the parameters ak; bk of the CG method and lk and

mk of the BPM method are clear

ak ¼ ð1 2 mkÞlk

akgk ¼ mk

ð13Þ

Using Eq. (7), one can solve for the learning rate and

momentum factor in terms of the CG parameters ak and bk;

for which the optimal choices are well known (Eq. (12)) as

follows.

mk ¼
ak

ak21

bk21

lk ¼
akak21

ak21 2 akbk21

ð14Þ

The discussion above can be summarized in the following

theorem.

Theorem 2.1. Consider the backpropagation method with

dynamic learning rate lk and dynamic momentum factor mk

given by

xkþ1 2 xk ¼ mkðxk 2 xk21Þ þ ð1 2 mkÞlkrk

which seeks to minimize a quadratic error function

f ðxÞ ¼
1

2
kx;Axl2 kb; xlþ c

where A is a symmetric positive definite matrix and the

gradient 7f ðxÞ ¼ Ax 2 b V 2r is also called the residue

(in the context of solution of the linear system Ax ¼ b).

Consider also the CG method, parameterized by ak and bk;

and given by

xkþ1 ¼ xk þ akpk

rkþ1 ¼ rk 2 akApk

pkþ1 ¼ rkþ1 þ bkpk

where

ak ¼
krk; rkl
kpk;Apkl

bk ¼
krkþ1; rkþ1l
krk; rkl

Then, with the learning rate and momentum factor chosen

dynamically as follows

mk ¼
ak

ak21

bk21

lk ¼
akak21

ak21 2 akbk21

and an appropriate choice of initial conditions, the two

methods produce the same set of vectors xk; rk: With this

choice of parameters lk and mk; the BPM method is said to

be optimally tuned, where optimality refers to the maximum

reduction in 2-norm of the vectors rk and pk at each

iteration.

Eqs. (12) and (14) show that the optimal learning rate and

momentum factor can be calculated in terms of the state

variables ðr;pÞ; although this involves calculation of more

inner products than the CG method. It may be possible to

derive simpler formulas for mk and lk; but we suggest that it

is easier and safer just to use the standard CG method, rather

than the equivalent ‘optimally tuned’ BPM algorithm. In

addition, the CG method also has numerous tried and tested

variants, both linear and nonlinear (Nocedal & Wright,

1999).

Finally, note that the formula for mk was obtained in Yu

and Chen (1997) where it was referred to as the optimal

momentum factor, however, the corresponding formula for

lk was not derived.

2.1. Practical implications for tuning of parameters

Although the focus of this paper is on theory and,

specifically, the connections between the BPM and CG

algorithms, a few words on practical implementations are in

order.

There are literally hundreds of proposals, some totally

heuristic and some based on convergence analysis, for

acceleration of the backpropagation algorithm using learn-

ing rate and momentum factors defined in different ways in

each proposal. One of the points we emphasize is that the

control Liapunov function approach that we use in this

paper is very general and can therefore also be used to

analyze other proposals in a systematic manner. To be more

specific, the parameters that are ‘tuned’ (such as learning

rate and momentum factor, or some combination of these) in

any specific proposal should be regarded as ‘control inputs’

which are to be chosen so as to make some appropriately

chosen Liapunov function negative definite (i.e. make it

into a control Liapunov function). The difficulty lies in
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the choice of the Liapunov function, as is always the case.

However, as shown above, for the ‘vanilla’ BPM algorithm,

the straightforward choice of 2-norms and weighted 2-

norms work as control Liapunov functions and lead to the

optimal choices of parameters, in the sense of maximal

reduction of the residual norm in each iteration.

Of course, there are many practical issues involved in

determining ultimate performance and the complexity and

cost of each iteration of an optimal algorithm may offset its

faster rate of convergence. For a discussion of some of these

practical computational issues, we refer the reader to

Kamarthi and Pittner (1999) and Yu and Chen (1997)

(and references therein).

3. Continuous optimization, BPM and the conjugate

gradient algorithm

Early papers on ‘continuous iterative methods’ and

‘analog computing’ (see, e.g. Polyak (1964), Rybashov

(1969) and Tsypkin (1971)) proposed the use of dynamical

systems to compute the solution of various optimization

problems. Specifically, Polyak (1964) investigates the idea

of using a dynamical system that represents a HBF, moving

under Newtonian dynamics in a conservative force field.

Later, a more detailed analysis of this system was carried

out by Attouch et al. (2000). In order to avoid the repetitive

use of the phrase ‘continuous version of X’ or ‘X dynamical

system’, the abbreviation ‘X ODE’ will be used below

(where X can be BPM, HBF, steepest descent, or CG).

Specifically, the HBF ODE is

€xðtÞ þ u_xðtÞ þ 7FðxðtÞÞ ¼ 0 ð15Þ

This is to be compared with the steepest descent ODE

_xðtÞ ¼ 2e7FðxðtÞÞ

As pointed out by Attouch et al. (2000), the damping term

u_xðtÞ confers optimizing properties in Eq. (15), but it is

isotropic and ignores the geometry of F: The second

derivative term €xðtÞ; which induces inertial effects, is a

singular perturbation or regularization of the classical

continuous Newton ODE, which may be written as

follows

72FðxðtÞÞ_xðtÞ þ 7FðxðtÞÞ ¼ 0

In the neural network context, x is the weight vector,

usually denoted w; and the potential energy function F is

the error function usually denoted EðwÞ (as in Qian

(1999)). In fact, with these changes of notation, it is

clear that the HBF Eq. (15) is exactly the equation

proposed by Qian (1999) as the continuous analog of

BPM. This is no surprise, since the physical model

underlying Qian’s model (point mass moving in a

viscous medium with friction under the influence of a

conservative force field and with Newtonian dynamics) is

the same as HBF.

Thus, the continuous version of BPM is the HBF ODE

and may be regarded either as a regularization of the

steepest descent ODE or the classical Newton ODE.

Qian (1999) proposes the Liapunov function

ET ¼
1

2
k_x; _xlþFðxÞ ð16Þ

which has time derivative along the trajectories of Eq. (15)

given by

dET

dt
¼ k€x; _xlþ k7F; _xl ¼ 2k_x; _xl # 0: ð17Þ

In view of the fact that the standard state space

representation of the second order (vector) ODE (Eq.

(15)) would involve both the position ðxÞ and the velocity

ð_xÞ; it is clear that the Liapunov function (16) has a time

derivative along the trajectories of Eq. (15) that is only

negative semidefinite. Thus, a conclusion of local asympto-

tic stability would require the use of LaSalle’s principle or

equivalent.

The other observation worth making is that the CG

algorithm allows for ak and bk (adaptive or dynamic choice

of parameters), whereas most existing analyses of BPM

assume that the learning and momentum parameters are

constant. In the context of the HBF ODE, allowing time-

varying parameters amounts to allowing the parameter u in

Eq. (15) vary with time. More generally, introducing two

time-varying coefficients into Eq. (15) gives

hðtÞ€xðtÞ þ uðtÞ_xðtÞ þ 7FðxðtÞÞ ¼ 0: ð18Þ

where hðtÞ and uðtÞ are nonnegative time-varying par-

ameters to be chosen adequately in order that the trajectories

of Eq. (18) converge to an equilibrium (that is a minimum of

the energy function). Choosing the obvious modification of

Eq. (16)

ET ¼
1

2
hðtÞk_x; _xlþFðxÞ ð19Þ

the time derivative along the trajectories of Eq. (15) given

by

dET

dt
¼

1

2
_hðtÞk_x; _xlþ hðtÞk€x; _xlþ k7F; _xl

¼ 2uðtÞ þ
1

2
_hðtÞ

� �
k_x; _xl # 0 ð20Þ

Once again, this is a negative semidefinite time derivative,

provided that uðtÞ . 1
2
_hðtÞ; ;t; however, any conclusions

about asymptotic stability now require more work and

additional assumptions, since LaSalle’s theorem is not

applicable in the time-varying case.

Section 3.1 explores this connection in more detail and

then proposes what we regard as a more fruitful continuous-

time version of the discrete CG iteration.
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3.1. Analysis of conjugate gradient flow

In this subsection, the HBF ODE is specialized to the

case of a quadratic potential function and the resulting

ODE is referred to as the CG ODE. In fact, there are

many different ways to write down a continuous version

of the discrete CG iteration. One natural approach is to

write down continuous versions of Eqs. (9) and (10) as

follows

_r ¼ 2aAp ð21Þ

_p ¼ r 2 bp ð22Þ

Elimination of the vector p yields the vector second order

CG ODE:

€r þ b_r þ aAr ¼ 0 ð23Þ

Observe that Eq. (23) is a version of Eq. (15), since for

the CG algorithm the ‘potential function’ being minimized

is F ¼ 1
2

xTAx 2 bTx; for which 7FðxÞ ¼ Ax 2 b V 2r;

so that the HBF ODE becomes (in x-coordinates) €x þ uþ

ux· _x 2 r ¼ 0: Multiplying through by A and observing

that €r ¼ 2A€x; _r ¼ 2A_x; the latter becomes €r þ u_r þ

Ar ¼ 0; which is Eq. (23) with u ¼ b; a ¼ 1: Thus, one

can think of Eq. (23) as an equation embodying the HBF

method, where the parameters b (friction coefficient) and

a (related to the spring constant) need to be chosen in

order to make the trajectories of Eq. (23) tend to zero

asymptotically.

3.1.1. Analysis of constant a and b

The constant parameter case is easily dealt with using

classical results of Rayleigh: a recent approach can be found

in Datta and Rincon (1993, Lemma 2.1, Theorem 3.1),

restated here for easy reference.

Lemma 3.1 (Datta and Rincon; 1993). Let l; x be an

eigenvalue, eigenvector pair of the quadratic eigenvalue

problem:

ðl2M þ lD þ KÞx ¼ 0 ð24Þ

Suppose that M ¼ MT . 0; K ¼ KT $ 0 and D ¼ DT:

Then

ReðlÞ ¼ 2
lll2Dx

lll2Mx þ Kx

ð25Þ

where Sx denotes xHSx:

Theorem 3.2 (Datta and Rincon; 1993). Each eigenvalue l

of Eq. (24) satisfies the inequality

lll #
rðDÞ

2lminðMÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðDÞ

2lminðMÞ

� �2

þ
lmaxðKÞ

lminðMÞ

s
ð26Þ

For Eq. (23), the matrices are M ¼ I; D ¼ bI and K ¼ aA;

leading to the results

ReðlÞ ¼2
lll2b

lll2 þaðxTAx=xTxÞ
#2

lll2b
lll2 þalmaxðAÞ

, 0

ð27Þ

proving that the zero solution of Eq. (23) is asymptotically

stable. Given that Eq. (23) represents a linear system, it can

be concluded that the stability is actually exponential. Note

also that Theorem 3.2 provides the following estimate for

the moduli of the eigenvalues of the second order pencil

lll#
b

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þalmaxðAÞ

s
ð28Þ

Eqs. (27) and (28) show how the choice of the parameters a

and b affect the dynamics of convergence, without the need

for modal decompositions used by Qian (1999).

3.1.2. Analysis of a and b chosen dynamically

As pointed out in Bhaya and Kaszkurewicz (2002), it is

natural to consider the discrete CG iteration (Eqs. (9) and

(10)) as a pair of coupled bilinear systems as the starting

point in the derivation of the parameters a and b; regarded

as control inputs. This approach will be repeated in the

analysis of Eqs. (21) and (22), rather than simply analyzing

stability properties of the second order vector ODE (Eq.

(23)) with variable parameters a and b: A control Liapunov

argument similar to that in Bhaya and Kaszkurewicz (2002)

is used (also see Quinn (1980) and Ryan and Buckingham

(1983)). Consider the Liapunov function candidate

Vðr; pÞ ¼
1

2
kr;A21rlþ

1

2
kp;Apl ð29Þ

Then

_V ¼ k_r;A21rlþ k _p;Apl ¼ k2 aAp;A21rlþ kr 2 bp;Apl

¼ 2akp; rlþ kr;Apl2 bkp;Apl

whence it follows that appropriate choices of a and b that

make _V negative semidefinite are as follows.

if kr;pl – 0; a ¼
kr;Apl
kr;pl

; b . 0 ð30Þ

if kr;pl ¼ 0; b such that kr;Apl2 bkp;Apl , 0 ð31Þ

Since b is positive and kp;Apl is positive, it follows that the

choice of b in Eq. (31) depends on the sign of kr;Apl : if this

inner product is positive, then b . kr;Apl=kp;Apl; if it is

negative or zero, any positive choice of b will do. Since _V is

only semidefinite, and a and b are functions of the state

variables r; p; LaSalle’s theorem can be applied. It states

that the trajectories of the CG flow (Eqs. (21) and (22)) will
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approach the maximal invariant set M in the set

G U {ðr; pÞ : _V ¼ 0} ð32Þ

Invariance of M , G means that any trajectory of the

controlled system starting in M remains in M for all t:

Given the choices of a and b in Eqs. (30) and (31),

observe that _V ¼ 0 can only occur if Eq. (30) occurs,

implying that _V ¼ 2bkp;Apl; which, in turn, is zero if and

only if p ¼ 0; so that G can be alternatively characterized

as {p ¼ 0}: From Eq. (21), p ¼ 0 ) _r ¼ 0; which, in turn,

implies that r is constant. From Eq. (22), p ¼ 0 implies

that _p ¼ r: Since r ¼ c (constant), this means that c must

be zero (otherwise p ¼ 0 could not occur). Global

asymptotic stability of the origin now follows from

LaSalle’s theorem.

The paragraphs above have proved the following

theorem.

Theorem 3.3. Given the symmetric, positive definite matrix

A; and a quadratic function F ¼ 1
2

xTAx 2 bTx; the

trajectories of the CG dynamical system, dependent on the

positive parameters a and b; defined as

_r ¼ aAp;

_p ¼ r 2 bp

converge globally to the minimum of the quadratic function

F (i.e. to the solution of the linear system Ax ¼ b) if the

parameters a and b are chosen as follows

if kr; pl – 0; a ¼
kr;Apl
kr;pl

; b . 0

if kr;pl ¼ 0; b such that kr;Apl2 bkp;Apl , 0

where r U b 2 Ax: The parameter b is chosen as follows:

if the inner product kr;Apl is positive, then b . kr;Apl=
kp;Apl; if it is negative or zero, any positive choice of b

will do.

Remarks. Note that the Liapunov function could be

chosen as

Vðr; pÞ ¼
1

2
kr;A21rlþ

1

2
kp;Qpl;

where Q is any positive definite matrix. In particular, the

choice Q ¼ I results in the simple choice of parameters

a ¼ 1; b . 0

demonstrating that the continuous version of the CG method

can even utilize constant parameters, as opposed to the

discrete CG method, where the ‘parameters’ a and b must

be chosen as functions of the state vectors r and p: Notice,

however, that they are chosen either as constants or in state

feedback form, rather than as some arbitrary functions of

time that must be chosen so as to stabilize Eqs. (21) and

(22). This makes it possible to use LaSalle’s theorem to

obtain a global asymptotic stability result.

It should also be noticed that the choices of a and b given in

Theorem 3.3 correspond to the choices made in the discrete

CG iteration.

A choice of initial conditions consistent with the discrete

CG iteration is: r0 ¼ b 2 Ax0 and p0 ¼ r0:

4. Conclusions

This paper establishes various connections between the

CG algorithm and the backpropagation algorithm with

momentum acceleration. In particular, a general control

Liapunov function approach to the analysis as well as

design of BPM type algorithms is proposed. A continuous

version of the CG algorithm is put forward and it is shown

how to choose the parameters (that correspond to the

learning rate and momentum factor) in state feedback form

in order to guarantee global asymptotic stability of this

system, implying convergence of the error to zero. This

result is new and should prove to be of value in

understanding the theoretical properties of backpropaga-

tion type algorithms; specifically in understanding the role

of the learning rate and momentum factor in modifying

convergence properties. In conclusion, we quote a

paragraph from Alber (1971) that is as relevant today

(with some minor changes in the buzzwords) as when it

was written 30 years ago: “The increasing interest in

continuous-descent methods is due firstly to the fact that

tools for the numerical solution of systems of ordinary

differential equations are now well developed and can thus

be used in conjunction with computers; secondly,

continuous methods can be used on analog computers

( ¼ neural networks); thirdly, theorems concerning the

convergence of these methods and theorems concerning

the existence of solutions of equations and of minimum

points of functionals are formulated under weaker

assumptions than is the case for the analogous discrete

processes” (Parentheses ours). Similar justification for the

consideration of continuous versions of well known

discrete-time algorithms can be found in Chu (1988) and

Chu (1992).
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